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Agenda

o Recap and Open Discussion

@ Classical Planners

© Numeric Planning

@ Temporal Planning

© Hybrid Planning

@ Non-deterministic/Probabilistic Planning
@ Others

© Conclusion
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Recap
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STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short
planning task, is a 4-tuple I1 = (P, A, I, G) where:
e P is a finite set of facts (aka propositions).

@ A is a finite set of actions; each a € A is a triple
a = (pre,, add,, del,) of subsets of P referred to as the action’s
precondition, add list, and delete list respectively; we require that
add, N del, = 0.

o I C P is the initial state.

@ G C P is the goal.

We will often give each action a € A a name (a string), and identify a
with that name.
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STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short
planning task, is a 4-tuple I1 = (P, A, I, G) where:
e P is a finite set of facts (aka propositions).

@ A is a finite set of actions; each a € A is a triple
a = (pre,, add,, del,) of subsets of P referred to as the action’s
precondition, add list, and delete list respectively; we require that
addg N dely, = 0.

o I C P is the initial state.
@ G C P is the goal.

We will often give each action a € A a name (a string), and identify a
with that name.

Note: We assume unit costs for simplicity: every action has cost 1.
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@ Action-centric language:

o Preconditions: when can actions be executed
o Effects: how actions affect the world
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Open Discussion

@ Homework: Round of Discussion
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Recap
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Open Discussion

@ Homework: Round of Discussion

@ What are your first impressions? UPAAL, ILP, PDDL
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Classical Planners
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The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC
organizers. Give awards to the most effective planners.”
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The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC
organizers. Give awards to the most effective planners.”

1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018

PDDL [McDermott et al. (1998); Fox and Long (2003); Hoffmann
and Edelkamp (2005); Gerevini et al. (2009)]

~ 70 domains, > 1500 instances, 74 planning systems in 2011

Optimal track vs. satisficing track

Various others: uncertainty, learning, ...

http://ipc.icaps-conference.org/
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Classical Planners
0®000000000

PDDL Support

List of PDDL features (sorted by how well are they supported by current
planners):

@ STRIPS, Types, Negative preconditions, Action cost
—(Almost) complete support
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List of PDDL features (sorted by how well are they supported by current
planners):

@ STRIPS, Types, Negative preconditions, Action cost
—(Almost) complete support

o Conditional Effects (when), Quantified Effects (forall)
—Common though sometimes may be detrimental for performance
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PDDL Support

List of PDDL features (sorted by how well are they supported by current
planners):

@ STRIPS, Types, Negative preconditions, Action cost
—(Almost) complete support

o Conditional Effects (when), Quantified Effects (forall)
—Common though sometimes may be detrimental for performance

@ Quantified preconditions (forall, exists), Derived Predicates
—Only a subset of planners support them
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PDDL Support

List of PDDL features (sorted by how well are they supported by current
planners):

@ STRIPS, Types, Negative preconditions, Action cost
—(Almost) complete support

o Conditional Effects (when), Quantified Effects (forall)
—Common though sometimes may be detrimental for performance

@ Quantified preconditions (forall, exists), Derived Predicates
—Only a subset of planners support them

Modelling Advice: Use the simpler model possible
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Classical Planners
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How (most) planners work?

Why? s this relevant for the user?
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How (most) planners work?

Why? s this relevant for the user? Yes, understanding the basic ideas
behind planning algorithms helps for writing useful models

—When the planner fails, you can diagnose it and improve the model or
find a more suitable planner
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How (most) planners work?

Why? s this relevant for the user? Yes, understanding the basic ideas
behind planning algorithms helps for writing useful models
—When the planner fails, you can diagnose it and improve the model or

find a more suitable planner

Two phases:

@ Preprocessing (Grounding)

@ Search
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How (most) planners work?

Why? s this relevant for the user? Yes, understanding the basic ideas
behind planning algorithms helps for writing useful models

—When the planner fails, you can diagnose it and improve the model or
find a more suitable planner

Two phases:

@ Preprocessing (Grounding)

—Transforms the PDDL input to an internal representation (close
to STRIPS)

@ Search
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Classical Planners
00®00000000

How (most) planners work?

Why? s this relevant for the user? Yes, understanding the basic ideas
behind planning algorithms helps for writing useful models

—When the planner fails, you can diagnose it and improve the model or
find a more suitable planner

Two phases:

@ Preprocessing (Grounding)
—Transforms the PDDL input to an internal representation (close
to STRIPS)

@ Search
—Finds an (optimal) plan
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Classical Planners
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Grounding

PDDL:
(: predicates
(at 72t — truck ?1 — loc)

)

(:action drive
:parameters (?t — truck 7?11 — loc 7?12 — loc)
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Classical Planners
000@0000000

Grounding

PDDL:
(: predicates
(at 72t — truck ?1 — loc)
)
(:action drive
:parameters (?t — truck 7?11 — loc 7?12 — loc)
)

Grounded Representation (Strips):

(at truckl Aalborg) (at truckl Aarhus) (at truckl Copenhagen)
(at truck2 Aalborg) (at truck2 Aarhus) (at truck2 Copenhagen)

(drive truckl Aalborg Aarhus) (drive truckl Aarhus Aalborg)
(drive truckl Aarhus Copenhagen)
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Classical Planners
000@0000000

Grounding

PDDL:
(: predicates
(at 72t — truck ?1 — loc)
)
(:action drive
:parameters (?t — truck 7?11 — loc 7?12 — loc)
)

Grounded Representation (Strips):

(at truckl Aalborg) (at truckl Aarhus) (at truckl Copenhagen)
(at truck2 Aalborg) (at truck2 Aarhus) (at truck2 Copenhagen)

(drive truckl Aalborg Aarhus) (drive truckl Aarhus Aalborg)
(drive truckl Aarhus Copenhagen)

—Size of the grounded representation is much bigger than the original PDDL
(exponential in the number of parameters of predicates and action schemas)

Alvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: Al Planning 10/38



Classical Planners
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Grounding: Finite-domain variables

(at truckl Aalborg) (at truckl Aarhus) (at truckl Copenhagen)

What have these three facts in common?
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Grounding: Finite-domain variables

(at truckl Aalborg) (at truckl Aarhus) (at truckl Copenhagen)

What have these three facts in common?

—Exactly one of them will be true in every reachable state!
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Classical Planners
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Grounding: Finite-domain variables

(at truckl Aalborg) (at truckl Aarhus) (at truckl Copenhagen)

What have these three facts in common?
—Exactly one of them will be true in every reachable state!

Most planners use finite-domain variables internally (instead of only
Boolean).

Example: Variable at-truckl has 3 values: Aalborg, Aarhus, Copenhagen
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Classical Planners
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History of Planning Algorithms

e Compilation into Logics/Theorem Proving: (popular: Stone Age —
1990)

e Partial-Order Planning: (popular: 1990 — 1995)

@ GraphPlan: (popular 1995 — 2000)

e Planning as SAT: (popular 1996 — today)

e Planning as Heuristic Search: (popular 1996 — today)

@ Planning as Symbolic Search (with BDDs): (popular 2000 — today)
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Classical Planners
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How to solve planning tasks? Search!
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How to solve planning tasks? Search!
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Classical Planners
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How to solve planning tasks? Search!
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Classical Planners
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Heuristic Search
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— Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small A(s).
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Heuristic Search
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— Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small A(s).

Live Demo vs. Breadth-First Search:
http://qiao.github.io/PathFinding. js/visual/
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Classical Planners
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Heuristic Functions from Relaxed Problems
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Problem IT: Find a route from Saarbruecken To Edinburgh.
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Heuristic Functions from Relaxed Problems

Linkdping

Saarbrucken

Relaxed Problem II': Throw away the map.
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Classical Planners
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Heuristic Functions from Relaxed Problems

Linkdping

h=1164,92 km

Saarjfrucken

Heuristic function h: Straight line distance.
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Classical Planners
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Relaxation in Route-Finding
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@ Problem class P: Route finding.

@ Perfect heuristic h, for P: Length of a shortest route.
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Relaxation in Route-Finding
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@ Problem class P:

Route finding.

@ Perfect heuristic h, for P: Length of a shortest route.

@ Simpler problem class P’:
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Relaxation in Route-Finding
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Problem class P: Route finding.

Perfect heuristic h}, for P: Length of a shortest route.
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@ Simpler problem class P’: Route finding on an empty map.
°

Perfect heuristic h3, for P’:
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Relaxation in Route-Finding

Classical Planners
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Alvaro Torralba

Problem class P: Route finding.

Pl

Edinburgh

Saarbruecken

Perfect heuristic h}, for P: Length of a shortest route.

Simpler problem class P’: Route finding on an empty map.

Perfect heuristic h},, for P’: Straight-line distance.

Transformation R:
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Relaxation in Route-Finding
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Problem class P: Route finding.
Perfect heuristic h}, for P: Length of a shortest route.
Simpler problem class P’: Route finding on an empty map.

Perfect heuristic h},, for P’: Straight-line distance.

e 6 6 o o

Transformation R: Throw away the map.
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!
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then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.
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@ Delete-relaxation
—lgnore the negative effects of the actions
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully

automatic.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

@ Delete-relaxation
—lgnore the negative effects of the actions

@ Abstractions
—Look only at part of the task
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

@ Delete-relaxation
—lgnore the negative effects of the actions

@ Abstractions
—Look only at part of the task

© Landmarks
—What facts need to be achieved on our way to the goal?
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

@ Delete-relaxation
—lgnore the negative effects of the actions
@ Abstractions
—Look only at part of the task
© Landmarks
—What facts need to be achieved on our way to the goal?

@ Critical Paths
—Decompose states into subsets of K facts
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Planning Heuristics

Challenge: Given a planning task II, simplify II to obtain a relaxed problem IT’,
then solve TI' to obtain the heuristic estimate h. All of this must be fully
automatic.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

@ Delete-relaxation
—lgnore the negative effects of the actions

@ Abstractions
—Look only at part of the task
© Landmarks
—What facts need to be achieved on our way to the goal?
@ Critical Paths
—Decompose states into subsets of K facts
© Operator Counting
—Use LP methods to estimate how many actions need to be applied
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Numeric Planning (PDDL 2.1)

In the real world: We have numbers! )

Numeric STRIPS Planning: Extends STRIPS by introducing numeric
variables V,, with rational values in Q.

@ Numeric expressions: We can do simple arithmetic (+, —, x, +) with the
values of variables and/or constants.

Alvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: Al Planning 18/38


https://sites.google.com/view/enhsp/

Numeric
®00

Numeric Planning (PDDL 2.1)

In the real world: We have numbers! )

Numeric STRIPS Planning: Extends STRIPS by introducing numeric
variables V,, with rational values in Q.

@ Numeric expressions: We can do simple arithmetic (+, —, x, +) with the
values of variables and/or constants.

@ Numeric conditions: compare numeric expressions with {<, <,=,>,>}.
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Numeric Planning (PDDL 2.1)

In the real world: We have numbers!

Numeric STRIPS Planning: Extends STRIPS by introducing numeric
variables V,, with rational values in Q.

@ Numeric expressions: We can do simple arithmetic (+, —, x, +) with the
values of variables and/or constants.

@ Numeric conditions: compare numeric expressions with {<, <,=,>,>}.

@ Numeric effects: assign a numeric expression to a numeric variable in V,.
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Numeric Planning (PDDL 2.1)

In the real world: We have numbers!

Numeric STRIPS Planning: Extends STRIPS by introducing numeric
variables V,, with rational values in Q.

@ Numeric expressions: We can do simple arithmetic (+, —, x, +) with the
values of variables and/or constants.

@ Numeric conditions: compare numeric expressions with {<, <,=,>,>}.

@ Numeric effects: assign a numeric expression to a numeric variable in V,.

ENHSP: (https://sites.google.com/view/enhsp/)
(examples in the next slides were taken from the ENHSP webpage)
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Simple Linear Numeric Planning (Example)

(define (domain fn—counters)
;(:requirements :strips :typing :equality :adl)
(:types counter)

(: functions
(value ?c — counter);; — int ;. The value shown in counter
(max_int);; — int ;; The maximum integer we consider — a st.

;. Increment the value in the given counter by one
(:action increment
:parameters (?7c — counter)
:precondition (and (<= (4 (value ?c) 1) (max_int)))
ceffect (and (increase (value ?c) 1))

;. Decrement the value in the given counter by one
(:action decrement

:parameters (?7c — counter)

:precondition (and (>= (value ?c) 1))

ceffect (and (decrease (value ?c) 1))

)
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Simple Linear Numeric Planning (Example)

(define (problem instance_4)
(:domain fn—counters)
(:objects

c0 cl c2 c3 — counter

)

(sinit
(= (max_int) 8)

(= (value c0) 0)
(= (value cl1) 0)
(= (value c2) 0)
(= (value ¢3) 0)
)
(:goal (and

(<= (+ (value c0) 1) (value cl1))
(<= (+ (value cl) 1) (value c2))
(<= (+ (value c2) 1) (value c3))
))
)
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?

@ preconditions:

o effects:
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Temporal
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?

@ preconditions: at-start

o effects: at-end
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?

@ preconditions: at-start , at-end

o effects: at-start, at-end
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously! J

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?

@ preconditions: at-start , at-end , over-all

o effects: at-start, at-end , over-all (continuous change)
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Temporal Planning (PDDL 2.1)

In the real world: Events do not happen instantaneously!

In classical planning the action effects happen immediately. However, in
the real world, actions take time to execute.
When the precondition needs to hold? When the effect is applied?

@ preconditions: at-start , at-end , over-all

o effects: at-start, at-end , over-all (continuous change)

@ POPF: https://nms.kcl.ac.uk/planning/software/popf.html
@ Optic: https://nms.kcl.ac.uk/planning/software/optic.html
@ IBaCOP: https://icenamor.github.io/portfolio/Temporal/
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Temporal Planning (Example Fox and Long (2003))

(:durative—action heat—water
:parameters (?p — pan)

:duration (= ?duration (/ (— 100 (temperature ?p)) (heat—rate)))

:condition (and (at start (full ?p))

(at start (onHeatSource ?p))
(at start (byPan))

(over all (full ?p))

(over all (onHeatSource ?p))
(over all (heating ?p))

(

at end (byPan)))
ceffect (and (at start (heating ?p))

(at end (not (heating 7p)))
(at end (assign (temperature ?p) 100)))
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Temporal Planning (Example Fox and Long (2003))

We can also encode continuous effects:

(:durative—action heat—water
:parameters (?p — pan)

sduration ()

:condition (and (at start (full ?p))

(at start (onHeatSource ?p))

(at start (byPan))

(over all (full ?p))

(over all (onHeatSource ?p))

(over all (heating 7?p))

(over all (<= (temperature ?p) 100))
(

at end (byPan)))
ceffect (and (at start (heating ?p))

(at end (not (heating ?p)))
(increase (temperature ?p) (x #t (heat—rate))))
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Hybrid Planning (PDDL +)

In the real world: The state of the world changes independently of ourJ
actions!
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Hybrid Planning (PDDL +)

In the real world: The state of the world changes independently of ourJ
actions!

e Exogenous events: Happen instantaneously (discrete)
—Example: Someone/something hits you, changing your direction
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Hybrid Planning (PDDL +)

In the real world: The state of the world changes independently of ourJ
actions!

e Exogenous events: Happen instantaneously (discrete)
—Example: Someone/something hits you, changing your direction

@ Continuous processes: Gradual changes
—Example: Gravity
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Hybrid Planning (PDDL +)

In the real world: The state of the world changes independently of ourJ
actions!

e Exogenous events: Happen instantaneously (discrete)
—Example: Someone/something hits you, changing your direction

@ Continuous processes: Gradual changes
—Example: Gravity

e ENHSP: https://sites.google.com/view/enhsp/
@ SMTPIlan: http://kcl-planning.github.io/SMTPlan/
@ Dino: http://kcl-planning.github.io/Dino/

Example in the next slides from: http://planning.wiki
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Hybrid Planning (Example)

(define (domain car_nonlinear_mt_sc)
(:predicates (engine_running) (engine_stopped) )
(:functions
(d) (v) (a) (drag-coefficient) (max_.speed)
(max_acceleration) (min_acceleration) )

(:constraint speed_limit
:condition (and (>= (v) (* —1 (max_speed))) (<= (v) (max_speed))))

(:process displacement
:precondition (and (engine_running) (> (v) 0))
ceffect (increase (d) (x #t (v))))

(: process moving_drag
:precondition (engine_running)
ceffect (increase (v) (x #t (a)) ) ;; acceleration )

(: process drag_ahead
:precondition (and (engine_running) (> (v) 0))
ceffect (decrease (v) (x #t (x (° (v) 2) (drag-coefficient)

) ) )
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Hybrid Planning (Example)

(:action accelerate
:precondition (and (< (a) (max.acceleration)) (engine_running) )
ceffect (increase (a) 1.0)

(:action stop-_car
:precondition (and (> (v) —0.1) (< (v) 0.1) (= (a) 0.0) (engine_rur
ceffect (and (assign (v) 0.0)

(engine_stopped)

(not (engine_running))) )

(:action start_car
:precondition (engine_stopped)
ceffect (and (engine_running)
(not (engine_stopped))))

(:action decelerate

:precondition (and (> (a) (min_acceleration)) (engine_running))
ceffect (decrease (a) 1.0)
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Hybrid Planning (Example)

(define (problem instance_1.300.01.100)
(:domain car_nonlinear_mt_sc)

(sinit
(= (d) 0.0)
(= (v) 0.0)
(engine_stopped)
(= (a) 0.0)
(= (max_.acceleration) 1)
(= (min_acceleration) —1)
(= (drag-coefficient) 0.1)
(= (max_speed) 10.0)
)
(:goal
(and

(>= (d) 29.5 )
(<= (d) 30.5 )
(engine_stopped)

)
)

Alvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: Al Planning 27/38



Probabilistic
©0000

Non-deterministic/Stochastic Environments

In the real world: we cannot always anticipate the effect of our actions!J

Differences with respect to classical planning:
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Non-deterministic/Stochastic Environments

In the real world: we cannot always anticipate the effect of our actions!J

Differences with respect to classical planning:
@ Actions can have multiple outcomes

@ (Optionally) If the probability of each outcome is known, then we
call it probabilistic planning.
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Non-deterministic/Stochastic Environments

In the real world: we cannot always anticipate the effect of our actions!J

Differences with respect to classical planning:
@ Actions can have multiple outcomes

@ (Optionally) If the probability of each outcome is known, then we
call it probabilistic planning.

Extensions of PDDL for Probabilistic Planning:
o PPDDL (next slide)
e RDDL (more general)
Probabilistic Planners:
@ Prost: https://github.com/prost-planner/prost
o IPC: https://ipc2018-probabilistic.bitbucket.io/
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PPDDL Example

(:action try—navigate—I1—12
:parameters (?hcur ?hnew — horizon—value ?x — rover)
:precondition
(and (horizon ?hcur)
(horizon—decrement ?hcur ?hnew)
(can_traverse ?x waypointl waypoint2)
(available 7x)
(at ?x waypointl)
(visible waypointl waypoint2)
(road_isunknown road2))

ceffect
(and (not (horizon ?hcur))
(horizon ?hnew)
(increase (total—cost) 1)
(not (road_isunknown road2))
(probabilistic
2/10 (and (road_isblocked road2))
8/10 (and (road_isfree road2)
(not (at ?x waypointl))
(at ?x waypoint2))
))

)
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Online vs. Offline Planning

Given a non-deterministic/probabilistic planning task:
Offline Planning: Plan ahead for every possibility.

@ Find contingent plan

@ Find (optimal) policy
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Online vs. Offline Planning

Given a non-deterministic/probabilistic planning task:
Offline Planning: Plan ahead for every possibility.

@ Find contingent plan

@ Find (optimal) policy

Online Planning: Decide what to do next: spent some time deciding what
action to execute, execute it, observe the result and re-plan if necessary.
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Fully-Observable Non-Deterministic Planning (FOND

Planning)

In the real world: we cannot always anticipate the effect of our
actions! (without probabilities)

PRP:
https://github.com/qumulab/planner-for-relevant-policies
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ooo0e

Planning Under Partial-Observability (POND)

In the real world: we do not know everything about the initial state!
(without probabilities)

@ Conformant Planning: A sequence of actions that works for all
possible initial states

@ Contingent Planning: We can have conditions along our plan
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Planning Under Partial-Observability (POND)

In the real world: we do not know everything about the initial state!
(without probabilities)

@ Conformant Planning: A sequence of actions that works for all
possible initial states

@ Contingent Planning: We can have conditions along our plan

e Conformant/Contingent-FF:
https://fai.cs.uni-saarland.de/hoffmann/cff.html

@ PO-PRP: https://github.com/qumulab/
planner-for-relevant-policies/wiki/PO-PRP
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Preferences/Soft Goals (PDDL 3)

@ Hard goals: In classical planning we must achieve all goal facts

@ Soft goals: Facts that are desirable, but not a must (each goal has
an associated reward)

@ Preferences: sometime-after, sometime-before, always-within,
hold-during, hold-after
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Preferences/Soft Goals (PDDL 3)

@ Hard goals: In classical planning we must achieve all goal facts

@ Soft goals: Facts that are desirable, but not a must (each goal has
an associated reward)

@ Preferences: sometime-after, sometime-before, always-within,
hold-during, hold-after

Oversubscription Planning: Fixed cost, maximize achieved goals

Net-benefit Planning: Minimize Cost - Reward
—Compilable to classical planning (give-up action)
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Multi-Agent Planning

In the real world: We are not the single and only agent! J

Multi-agent planning: Several agents must collaborate to achieve a

common goal.
Key: There is some global information known by all agents but each
agent has his own private facts, who do not want to share with the rest.
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Multi-Agent Planning

In the real world: We are not the single and only agent! J

Multi-agent planning: Several agents must collaborate to achieve a
common goal.

Key: There is some global information known by all agents but each
agent has his own private facts, who do not want to share with the rest.

Multi-Agent STRIPS Planning: A multi-agent STRIPS planning
task, is a 5-tuple Il = (P, A, I, G) where:
@ P is a finite set of facts, divided in private and public facts.
@ A is a finite set of actions; each a € A is a triple of pre, add, and
del, divided in private and public actions.
@ I C P is the initial state.
@ G C P is the goal.
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Multi-Agent Planning

In the real world: We are not the single and only agent! J

Multi-agent planning: Several agents must collaborate to achieve a
common goal.

Key: There is some global information known by all agents but each
agent has his own private facts, who do not want to share with the rest.

Multi-Agent STRIPS Planning: A multi-agent STRIPS planning
task, is a 5-tuple Il = (P, A, I, G) where:
@ P is a finite set of facts, divided in private and public facts.
@ A is a finite set of actions; each a € A is a triple of pre, add, and
del, divided in private and public actions.
@ I C P is the initial state.
@ G C P is the goal.

—Agents must communicate during the planning process to share

information about how they will achieve the goal
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Planning in the Real World

If most real-world environments are not deterministic, not fully
observable, not discrete, not single agent, and temporal. What is
classical planning good for?
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If most real-world environments are not deterministic, not fully
observable, not discrete, not single agent, and temporal. What is
classical planning good for?

@ The model does not try to simulate the environment, it is just a tool
to take good decisions.
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Planning in the Real World

If most real-world environments are not deterministic, not fully
observable, not discrete, not single agent, and temporal. What is
classical planning good for?

@ The model does not try to simulate the environment, it is just a tool
to take good decisions.

@ Oftentimes, reasoning with a simplified model can still lead to
intelligent decisions and solutions are easier to compute than with
more complex models.

@ Classical planning is a relaxation of the problem so it can be used in
heuristics for more complex types of planning.
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Planning in the Real World

If most real-world environments are not deterministic, not fully
observable, not discrete, not single agent, and temporal. What is
classical planning good for?

@ The model does not try to simulate the environment, it is just a tool
to take good decisions.

@ Oftentimes, reasoning with a simplified model can still lead to
intelligent decisions and solutions are easier to compute than with
more complex models.

@ Classical planning is a relaxation of the problem so it can be used in
heuristics for more complex types of planning.

My two cents: Ideally, we should always provide an accurate description of the
environment so that the Al simplifies it when necessary. However, automatic

simplification methods are not powerful enough in all cases yet.
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Summary

@ You can use planning tools to solve your problems:
—Encode them in PDDL and use any planner

@ Classical planning is very effective at solving large problems

@ Non-classical planning models reason about more complex environments
such as non-deterministic, partially-observable, continuous, temporal, etc.

@ Solving these problems by computing a complete offline policy is hard
(though many non-classical planners are able to do this satisfactorily in
some domains). Many approaches are online, planning to decide the next
action by looking into the future but without considering all alternatives.

@ Classical planning and heuristic search techniques are still an important
ingredient of many approaches that deal with complex environments.
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Additional Resources

o Editor: http://editor.planning.domains/

o Wiki: https://planning.wiki/

@ Benchmarks:
https://github.com/aibasel/downward-benchmarks

@ Visual Studio Plugin:
https://github.com/jan-dolejsi/vscode-pddl
Planners:

o Fast Downward: http://www.fast-downward.org/
o IPC-18: https://ipc2018-classical.bitbucket.io/#planners

@ Domains as examples:

STRIPS: FD'All — Blocksworld, Logistics

Action costs: IPC'11 — Woodworking, Transport

Discretized numbers: IPC'11 — Nomystery (fuel consumption)
Forall-when: IPC'18 — Nurikabe

Complex ADL: FD'All — Miconic-ADL (ID114)
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