Automated
Planning Tools
for Intelligent
Decision
Making

1\

Planning

Planning

From Wikipedia, the free encyclopedia

"Forethought" redirects here. For the defunct software company, see Forethought, Inc.

Planning (also called forethought) is the process of thinking about and organizing the activities
required to achieve a desired goal. It involves the creation and maintenance of a plan, such as
psychological aspects that require conceptual skills. There are even a couple of tests to measure
someone’s capability of planning well. As such, planning is a fundamental property of intelligent
behavior.

Also, planning has a specific process and is necessary for multiple occupations (particularly in
fields such as management, business, etc.). In each field there are different types of plans that help
companies achieve efficiency and effectiveness. An important, albeit often ignored aspect of
planning, is the relationship it holds to forecasting. Forecasting can be described as predicting
what the future will look like, whereas planning predicts what the future should look like for multiple
scenarios. Planning combines forecasting with preparation of scenarios and how to react to them.
Planning is one of the most important project management and time management techniques.
Planning is preparing a sequence of action steps to achieve some specific goal. If a person does it
effectively, they can reduce much the necessary time and effort of achieving the goal. A plan is like
a map. When following a plan, a person can see how much they have progressed towards their
project goal and how far they are from their destination.

hning Tools, ...

Scheduling

In computing, scheduling is the method by which work specified by some means is assigned to
resources that complete the work. The work may be virtual computation elements such as threads,
processes or data flows, which are in turn scheduled onto hardware resources such as processors,
network links or expansion cards.

A scheduler is what carries out the scheduling activity. Schedulers are often implemented so they
keep all computer resources busy (as in load balancing), allow multiple users to share system
resources effectively, or to achieve a target quality of service. Scheduling is fundamental to
computation itself, and an intrinsic part of the execution model of a computer system; the concept
of scheduling makes it possible to have computer multitasking with a single central processing unit
(CPU).

A scheduler may aim at one of many goals, for example, maximizing throughput (the total amount
of work completed per time unit), minimizing response time (time from work becoming enabled until
the first point it begins execution on resources), or minimizing /atency (the time between work
becoming enabled and its subsequent completion),['l maximizing fairness (equal CPU time to each
process, or more generally appropriate times according to the priority and workload of each
process). In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler
will implement a suitable compromise. Preference is given to any one of the concerns mentioned
above, depending upon the user's needs and objectives.

In real-time environments, such as embedded systems for automatic control in industry (for
example robotics), the scheduler also must ensure that processes can meet deadlines; this is
crucial for keeping the system stable. Scheduled tasks can also be distributed to remote devices
across a network and managed through an administrative back end.

Topics / People

. Planning via Model
Checking

Kim Larsen, Peter Gjgl Jensen

II. Planning via
Operations
Research

Peter Nielsen, Mohamed EI Yafrani, Inkyung Sung

lll. Planning via Al

Alvaro Torralba

Automated Planning Tools, ... Kim Larsen [4]

Planning
via
Model Checking

''''''

Timed Automata
= Model Checking
= Time-optimal Planning V
= Zones

= Priced Timed Automata

1995

Optimization

= Cost-optimal Planning 2001
= Priced Zones A*
= Timed Games Synthesis 5005
= Dynamic Planning
= Strategies, Zones —_ -
= Stochastic Timed Automata Component - 5 G\ fL] 200
= Performance Analysis Testi ,
= Statistical Model Checking esting TR@N] 2004
= Stochastic Priced Timed Games
= Expected Cost Optimal Adaptive Performance 2011
Planning

Analysis

= Strategies
= Reinforcement Learning
= Applications

/(/ i%"\ b } /
- Cost Probability

No!

System Description Debugging Information

— :
ﬁ \‘ Yes
: Prototypes
Requirement Executable Code
A[](req => A<> grant) Test sequences

Automated Planning Tools, ... Kim Larsen [10]

Train Crossing

Stopable
Area

[10,20]
[3,5]

Automated Planning Tools, ... Kim Larsen [11]

Tral n CI‘OSS | ng Communication via channels!

Stopable

Area
appr ~— leave
stop

<<

id- ”pa rameter”

[7,15]
- A

River

list enqueue()
dequeue()
front()

Automated Planning Tools, ... Kim Larsen [12]

X>=3

leave[id]!
Sa&e‘l'E:

Cross Invariants

X<=5
appr]id]!
x=0

. X>=7
=0 T
Resets X
Guards

Appr Start
x<=20 x<=15

Synchronizations

Automated Planning Tools, ... Kim Larsen [13]

Free
—0—
e:id t
len >0 len ==
go|[front()]! appr[e]?
enqueue(e)
- /
Occ
e:id_t
appr[e]? stop([tail()]!
enqueue(e)

Automated Planning Tools, ...

e:id_t

e == front()
leavele]?
dequeue()

id £ list[N+1];
int[0,N] len;

S Put an elsment at the end of the gueue

void engqueue (id £ element)

{

list[lent+] = element;

A Remowe the front slemsnt of the gueus

vold degueue ()

{

int i = 0;

len —= 1;

while [i < len)

{
list[i] = li=st[i + 1];
it++;

}
list[i] = 0O;

Kim Larsen [14]

T———— S —— — e = —
| ¥9 C:\Users\kgl\Desktop\DESKTOP12\UPPAAL\UPPAAL examples\LCCC2013\SMC\TrainGateCPS14.xml - UPPAAL ‘
File Edit View Tools Options Help

Da@moce|lada{@-tse

Editor | Simulator | ConcreteSimulator | Verifier | Yagdrasil|

I :ﬁ‘;;;]:;& ““““““““““““““““ : Nam: ,‘I’rain—l Pararneters: |mn5t id_t id l
Declarations
BR

£+ Gate
. - Declarations o
‘-4 System declarations

idn
Safe .(leavefid]! Cross
(1 +id):N*N x<=5
apprlid]!
x=0
x==7
=0
Appr Start
x<=20 x<=15

x<=10
stopl[id]?

go[id]?
x=0

Stop

UPPAAL Exalaples
SSFT15/UPPAAL SMC/

Automated Planning Tools, ... Kim Larsen [15]

file:///C:/Users/kgl/Desktop/DESKTOP12/POWERPOINT/Toulouse 2014/ScreenCapture_2014-10-15 9.0.58.wmv

Resource

use?

XK=

Idle

—Or- -

InUse

~—>-.—J

X<=7

donel

X>=4

Semantics:

(Idle , x=0)
- (Idle , x=2.5)
- (InUse , x=0)
- (InUse , x=5)
- (Idle , x=5)
- (Idle , x=8)
- (InUse , x=0)

d(2.5)
use?
d(5)
done!
d(3)
use?

Resource
Idle

—O-<—

X:=0 InUse

~—>-.—J

x<=B

Semantics:
(Idle , Init , B=0, x=0)

- (Idle , Init , B=0 , x=3.1415) d(3)
- (InUse , Using , B=6, x=0) use
- (InUse , Using , B=6, x=6) d(6)
Resource - (Idle , Done , B=6, x=6) done
Idle
—O-—
use? done!

k_>.‘_) Task

xX<=B

Init Using

use!
‘I' E&=63i‘l'

.

Done

done?
-O

Task Graph Scheduling - Example

Compute
D*(C*(A+B))+(A+B)+(C*D))

_ 4
using 2 processors

P1 (fast) P2 (slow)

+ | 2ps
\:'ig,“il\ X 3ps

10 15 20 25

3 5 @730"0'0' | ‘

~
IIIII

o
4 T

Automated Planning Tools, ... Kim Larsen [20]

Task Graph Scheduling - Example

Compute
D*(C*(A+B))+(A+B)+(C*D))

using 2 processors

P1 (fast) P2 (slow)
- + | 2ps | . + | 5ps
@ * | 3ps * | 7ps

| | | | | | Jel: s ! 20 25
'~NS Py
' ||[|M.44)

J-ﬂ

Automated Planning Tools, ... Kim Larsen [21]

Compute

(D*(C*(A+B))+((A+B)+(C*D))

! C:\Documents and Settings\kgl\DesktopADESKTOP FEB 200 AUPPAALMIPPAAL examples\
File Edit Wew Tools Options Help

na 200MDAY 2 Afternoonitaskgraph-AVACS2010.xml - UPPAAL

Ba ™

| Editar || imulator || verifier |

Qe e K@ --e

2]
Task1 Task2 Task3 Task4 1
donel? f1:1". fl=1 done2?
Task5 Task6
M1 M2
Idle Idle
usel? donell use2? tlone2!
¥1:=0| Inlse | x1=HE1 =0 InUse 2=02
wl <=B1 w2<=E2
donel? 15=T’. B=1 donel; donel? f5=1’. B=1 done2
]

P2

1

<C

machines

optimal

4
20
10
12
20
8
20
12
12
16
16
19
17
18
3
10

1178
537
700
891
605
1570
629
1163
1340
t.0.
t.o.
1118
1257
1318
8009
2471

-

AMETIST

advanced methods for timed systems

Symbolic A*
Branch-&-Bound
60 sec

Abdeddaim, Kerbaa, Maler

e Only 1 “Pass” UNSAFE
e Cheat is possible

(drive close to car with “Pass”)

SAFE CAN THEY MAKE IT TO SAFE
WITHIN 70 MINUTES ???

Let us play!

B Scheduling using Uppaal

Limnit: 70
Time: 0

Configure Interact Find some solution Find best solution

| »

Solving scheduling problems using Uppaal Using the buttons above you can:

A mamber of cars are to pass a bridge. There iz a toll for passing the bridge -- and

. . . # Configure:
a device (known as the BroBizz' or 'EasyPass" must be used in order to pass the
bridae (¥) P Setup the nunber of cars, their speed, and the time lirmit
B + Interact:

Try to solve the problem matually
Find some solution:

Usze Uppaal to solve the problem and display the solution
Find best solution:

Usze Uppaal to find the best solution ta the problem

There is only one BroBizz available to the cars -- but luckily the toll booth system
can be cheated if two cars drive close to sach other. Only cars from the side at
which BroBizz iz located can pass the bridge. The toll booth at the side at which
the BroBizz iz located is colored green.

All cars must pazs the bridge within a given time limit (shown at the center of the
screety). Each car spends a given mumber of minutes passing the bridge. This
schedulability problem can be solved using the Uppaal tool —|

Automated Planning Tools, ... Kim Larsen [26]

Real Time Scheduling

Scheduling Problem
using UPPAAL

Solve

c1

c2

unzakl .

ye= 25

v

releszel

RIO12/DAY3/

UNSAFE

releaze’?

)

Automated Planning Tools, ...

:safe L ==
Q take |
— |Pass
release! y ==
relea
y>=5
& take | é L=
y =0 L==1 safe
- =afe

Kim Larsen [27]

———

T
% C\Users\kgh\Desktop\DESKTOP12\UPPAAL\UPPAAL examples\LCCC2013\SMC\TrainGateCPS14.xml - UPPAAL

—

R ———
—_—

File Edit View Tools Options Help

| Ba@|9¢|Aaa R@< e

Editor| Simulator | ConcreteSimulator | Verifier | Yggdrasil|

Enabled Transitions

[front()]: Gate — Train(5)

| b otext || 8 Reset |

Simulation Trace

Train(1) -
(Safe, Cross, Stop, Stop, Stop, Stop, Occ)
leave[1]: Train(1)} — Gate[1]

(Safe, Safe, Stop, Stop, Stop,

go[front()]: Gate — Train(5)

Stop, Free)

(Safe, Safe, Stop, Stop, Stop, Start, Occ) m
appr[0]: Train(0) — Gate[0] Ll
oy
Trace File: | |
[4l Prev " I Next][] Replay]

| =iopen | Psae | M Random |

EE——)

Train({0)

~Train(4).x € [23,60]
~Train(5).x € [30,65]
~Train(0).x - time = -50

- Train(0).x - Train(1).x = [10,20]
F-Train(0).x - Train(2).x = [0,5]

- Train(3).x - Train(0).x = [17,40]

|- Train(4) x - Train(0).x = [10.35]

F-Train(2).x - Train(1).x & [7,20]

~Train{4).x - time = -33
~Train(4).x - Train(3).x = [-20,0]
~Train{3).x - time £ -30
~Train(3).x - Train(0).x € [17,40]
~Train(3).x - Train(4).x [0,20]

clock y

A zone /.
1I<x<2 A
O<y<2 A
X-y>0

1<=x<=4
1<=y<=3
\ y Y y

delays to

Y
conjuncts to

3<x, y=0

projects to

X
((,1<z2<4,1<y<3)=q{,3<z,y=0)

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-ifforsome Z 2 Z
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n,2) =>(m,\U) }
to Waiting;
Add (n,Z) to Passed

| UNTIL Waiting = @
\\.I”'t _/ passed / or

Final is in Waiting

X1-x2<=4
x2-x1<=10
X3-x1<=2
X2-X3<=2
X0-x1<=3
x3-x0<=5

DBMs

Bellmann 56
-4 -4
@ @ Shortest
Path
Closure
3 ¢ o(n”3)
-4
Shortest
orte () ()

Reduction Space worst O(n"2)
o(n~3) 3 : practice O(n)

Ol©

Minimal Constraint Form
RTSS'97

Datastructures for Zones

= DRMN

| UPPAAL - Mozilla
File Edit Yew Go Bookmarks Tools ‘Window Help

. Oﬂ o O O |':l?~ htkp: f o, uppaal. comf

= M
I*ﬁ Home | CoBookmarks

Urror

Y

. Current version is 1.0.2. 2, NEWS
D| 3 Download for Linux o 04/02/2004: ersion 1.0.2 released. Changes are: new functions for federations and bug

Documentation + fixes for Federation, dbmf_predt, and the subtractions (rare bug).

B AP of the library 221 212004: LUPFAAL DEM library 1.0.1 released.

Felated presentation

on the library and | E UPPAAL DBM LIBRARY

SLibtractiDns: + DBMs (difference bound matrices) [rokickida, Ipwfctds, bengtsson02] are efficient data
di Presentation (ppt) ¢ structures to represent clock constraints in timed automata [ad80]. They are used in
i Presentation (pdf) L UPPAAL [IpyS7, b04, bdl04] as the core data structure to represent time. The library
Related papers: + features all the common operations such as uﬂ;:u{l[delay, ar future), down (past), general

True

Automated Planning Tools, ... Kim Larsen [34]

