Chapter 1

An Introduction to Automatic Synthesis of
Discrete and Timed Controllers

Franck Cassez, Kim Larsen, Jean-Francois Raskin, ancePiain Reynier

1.1 Introduction

In this chapter, we introduce models and algorithms for thtermatic synthesis of
controllers for discrete and timed (infinite state) systefine techniques that we ex-
pose here are based on the game metaphor [5, 4]: when desaggn@mbedded con-
troller, you can see the controller as interacting with iginment. As the actions
taken by the environment are uncontrollable, those acsbosld be considered as
adversarial Indeed, a controller should be correct no matter how théemment
in which it operates behaves. The models, algorithms arld twesented here are
applied to an industrial case study in the next chapter. ddse study was provided
to us by HrDAC ELECTRONIC GMBH within the Quasimodo project.

The objective of the chapter is to allow the reader to undestimed game
automata [3] as a model for solving timed control problemihWhis objective in
mind, we define the notions of game graphs, controllable andntrollable actions,
strategies, and winning objectives. We also give a gentteduction to the main
algorithmic ideas that are used to solve games played omgrdinose techniques
are used in the tool RRPAAL-TIGA [1]. A good understanding of the techniques
used in LPPAAL-TIGA should help the users when modeling control problems and
formulating queries about their models.

The chapter is organized as follows. In section 1.2, we thioe an example of
a timed control problem called the'Chinese juggler conproblem”. This example
allows us to illustrate the game metaphor for formalizingtimed control problem.
In Section 1.3, we introduce the basic definitions undegyire game approach to
controller synthesis. In Section 1.4, we outline two altforis that are used to solve
(untimed) reachability and safety games respectivelyectisn 1.5, we show how
the concepts developed in Sections 1.3 and 1.4 can be extémdiened systems.
In Section 1.6, we summarize the main ideas underlying therséhms for solving
timed games. In Section 1.7, we give an introduction to toetiPPAAL-TIGA and

2 Franck Cassez, Kim Larsen, Jean-Francois Raskin, anei&in Reynier

show how to model and automatically solve the Chinese jugriatrol problem
with timed game automata.

1.2 The Chinese juggler control problem

In this section, we introduce a running example that we ut ia this chapter
to illustrate how timed controllers can be automaticallptigsized using the tool
UPRAAL-TIGA. The example also allows us to illustrate the game metapdror f
controller synthesis that underlies the development oftti@®ry in Sections 1.3
and 1.4.

A Chinese juggler has to spin plates that are on sticks togmtethem from
falling, see Fig. 1.1 for an illustration. Assume, for ouaaple, that the juggler
wants to handle two plates, call®@late 1 andPlate 2 . Plates crash after a
while if they are not spun. Initially, each plate is spinnimgits stick and the spin
is fast enough so that they will stay stable for at least 5s#€oThe juggler has to
maintain them stable for as long as possible (forever ifiptess For that, the juggler
can spin each plate but he can spin only one of the platesratafi’hen he decides
to spinPlate i € {1,2}, he should do it for at least 1 time unit. If he decides to do
it for t time units therPlate i stays stable for 3 time units if £t < 2, and for 5
time units ift > 2.

Now, assume that there is also a mosquito in the room. Whemtbegjuito
touches one of the two plates, it reduces the spinning ofltite pand as a result its
remaining stability time is decreased by 1 time unit. Whenrttosquito touches the
plate, it gets afraid and this guarantees that it will nottoany plate again before
D time units have elapsed (after that amount of time the méstais forgotten and
he is not afraid any more).

We want to answer the following questi¢@P):

Given a value foD, does the Chinese juggler have a way to spin the plates sadhatof
the two plates ever falls down no matter what the behavioheftosquito is ?

Let us first try to understand how this timed control problean be seen as a
two player game. In the system underlying our example, we Isaveral compo-
nents: the Chinese juggler, the plates, and the mosquiéarig) only the behavior
of the Chinese juggler is under control. The plates and thgguito are part of the
environment: when a plate has not been spun enough, it daat &ly time, and the
behavior of the mosquito is out of control of the juggler, thee mosquito decides
when it touches plates. As a consequence, we can see thelgootrilem appos-
ing two players: on one hand the Chinese juggler (Player 1), artbeother hand
the plates and the mosquito (Player 2).

During this game, at any point in time, the Chinese juggley hacide to spin
one of the two plates. If he decides to do so, he will do it foteaist one time
unit. Then either he decides to continue to spin the plate stop and remain idle
for a while, or to start spinning the other plate. The altéwes that are offered to

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 3

Fig. 1.1 A Chinese juggler (cartoon courtesy of Jean Cardinal.)

the juggler along time can be understoodnasvesin the underlying game. The
mosquito, if it has not touched a plate in the precedintime units, may decide to
touch one of the two plates whenever it wishes to do so. Aghose alternatives
can be seen as moves in the underlying game. Similarly, wiptst@ does not spin
fast enough then it may crash at any moment. To summarizeriyemoves that
we control are the moves of the Chinese juggler, they are the moves géPla

all the other moves anencontrollable they are the moves of Player 2. We must be
prepared to face all the moves available to the mosquito@titetplates.

Second, we need to understand whatdbgctivesof the two players are. The
objective of the Chinese juggler is to avoid the plates taltr&or the objective of
the plates and the mosquito (Player 2), it may not be as cléar.mosquito flies
randomly in the room and touches one of the plates on occaBignclearly, we
want to devise a strategy for the Chinese juggler suchwiatever the behavior of
the mosquito igwithin the hypothesis that it does not touch twice the @atéhin
less tharD time units), the plates never crash. So, even if we do not lm@atly the
intention (or the exact specification) of the mosquito, #age to be prepared for the
worst case scenario. So the kind of game that we consideeasesum games set
of behaviors (of the system) is identified as good for Playemt the complement
of this set (all other behaviors) are considered as goodl&yeP 2.

1.3 Control asatwo-player games

Now that we agree that control problems can be seen as twesplmmes, we in-
troduce the precise definitions underlying the theory of-pdayer games played
on graphs. Later we extend those notions with dense timer Aftesenting timed
games, we show how to model the Chinese juggler problem wwmitad game au-

4 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, anei&in Reynier

tomata and how we can answer questiGP) moreover if the answer is yes we
also show how to synthesize automatically a winning stsafegthe Chinese jug-
gler using the tool BRAAL-TIGA.

1.3.1 Game structures

A game structuras a tupleG = (L, 4;n;it, Acty, Acty, E) wherelL is a finite (non-
empty) set of locationd;,;: € L is theinitial location of the gameAct; andAct;
are the two disjoinsets of actiongor Player 1 (the controller) and Player 2 (the
environment) respectively, artfl C L x Act; UActy x L is aset of edgebetween
the locations of the game labelled by actions that belorfteeito Player 1 or to
Player 2. Intuitively, edges labeled with elements fram; belong to Player 1 and
are controllable (represented by plain arrows) while etigsled by elements from
Act, belong to Player 2 and are uncontrollable (represented lyatbarrows). We
let Enabled;(¢) be the set of actions of Playér {1,2} available at locatior?
i.e.Enabled;(¢) = {a € Actj | 3(¢,a,¢') € E}.

We require that for all € L, Enabled;(¢) # &, so that Player 1 is always able
to propose an action to play in any location of the game.

Example 1Fig. 1.2 depicts a game structure. The set of locatiohs4§L.0,L1,12,
L3}. InlocationLO, Player 1 can choose between actar actionb, while Player 2
can choose between actiohand actioru2.LO0 (inner circle) is the initial location of
the game. The edde0,a,L1) belongs to Player 1 and the ed@®, ul,L1) belongs
to Player 2. O

AN

N

al,uz,uE

Fig. 1.2 An example of a game structure

The way players are playing on a game structire (L,4;,;t, Acty, Acto, E) is
defined as follows. Initially, a pebble lies @R;;, the initial location of game. Then
the game is played in rounds. Let us assume that, for therdqwwand, the pebble
lies on locatiory € L. Then, first, Player 1 chooses some actioa Enabledy(¢).

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 5

Then Player 2 decides where to move the pebble onto the swrdesations of
while respecting the following rule: for moving the pebbleeaises either an edge
labeled with an action oAct, or an edgé labeled with the actiom chosen by
Player 1. By interacting in such a way for an infinite humberafnds, Player 1
and Player 2 are constructingplay. Formally a playp = ¢of; ... ¢, ... of the game
structureG is an infinite sequence of locations. We fgt] = ¢;,i > 0 and denote
Play(G) for the set of plays o6.

Example 2Let us illustrate the notion of play using the example of Bi@. ASLO

is the initial location of the game structu@ the pebble initially lies or.0. Then
Player 1 is asked to make a choice among the actions that ailatde for her in
locationLO. This set ig{a,b}. Assume that she choosadn this case, there are two
possibilities. Either, Player 2 chooses to let Player 1 plag the pebble is moved
using an edge labeled with the leteein our example, there is only one such edge,
and so the pebble is moved on locatigh By this interaction, a finite prefikOL1

of play is built. Or, Player 2 chooses to overtake Player 1ltaqdayu?; in that case,
the finite prefixL0 L2 of a play is built. Assume that the second situation applies
Then a new round starts it2. In that location, there is no uncontrollable transition,
so if Player 1 chooses then the pebble is moved 18 and if she choosds it is
moved toLO, etc. O

1.3.2 Winning objectives and strategies

We have seen that the interaction between Player 1 (theatlemjrand Player 2
(the environment) on a game struct@e= (L, /;;it, Acty, Acto, E) generates a play
which is an infinite sequenad®/; ... ¢, ... of locations in the game graph, i.e. the
sequence of locations traversed by the pebble during theseatfithe game. Such a
sequence models one behavior of the system under contcolhebehavior could
be considered asgoodbehavior or as Aadbehavior depending on what we expect
from our systerh In the game terminology, such a classification of good antl ba
behaviors leads to the notion of winning objectivewining objectiveéfor a game
structureG is a set of infinite sequences of locations, the intentiondpéiat such
sequences represent the good behaviors of the system.

Example 3Assume that in our running example, Player 1 has the obgtdiveach
the set of location$L3,L4}. In this case the winning objective will contain all the
playslpl1ls... 4y . .. such that; = L3V ¢ = L4 for some > 0. |

In the example above, the winning objective is a so-catahability objective
as it specifies a set of locations that we want to visit. In ¢higpter, we concentrate
on two classes of objectiveeachabilityandsafety Given a set ofargetlocations

1 There might be more than one-successor of. In this case, Player 2 resolves the non-
deterministic choice of the-successor.

2 As stated earlier, we play zero-sum games and in this casgeyasptither good or bad.

6 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, anei&in Reynier

T C L, we define the set of winning plays of theachability objective defined by
T as the set of playReachg(T) = {p € Play(G) s.t.3i > 0-p[i] € T}. Given a set
of safelocationsS C L, we define the set of winning plays of tisafety objective
defined by @s the sefafeg(S) = {p € Play(G) s.t.Vi > 0-p|i] € S}. In the sequel,
we often usébj to represent a set of winning plays.

The winning objective specifies what the good plays for Rldyare. Those
good behaviors can be enforced by the controller (Playef dhe has a strategy
to force the play to be within the winning objective no matidrat the strategy
played by Player 2 is (so without the help of Player 2). Forlgter definition to
be completely clear, we need to define more precisely whsitagegyis. In our
games, a strategy for Player 1 determines what actions Aomto pick during
the course of the game. In general, a strategy may dependeohigtory of the
game for deciding what the good action to play is. Nevertggléor reachability
and safety objectives, the situation is simpler and it cashimsvn that strategies that
only depend on the current position of the pebble are sufiicthose strategies are
called “memoryless” strategies. So, in this chapter we entrate on such simple
strategies. We now define them formally.(faemoryless) stratedpr Player 1 is
a functionA : L — Acty, i.e. it is a function that given the current locatiére L
chooses an actioly (¢) € Enabled; (¢) for Player 1.

Let us now define the possible behaviors in the game stru@uréL, £;,;, Act,
Acty,E) when Player 1 plays according to the stratdgyRemember that Player 1,
in the game above, chooses an action at each round. Then Rlelyeoses between
the edges labeled by this action or labeled with one of her astions. The set of
behaviors in this case is thus the set of paths that stégtimnd use only edges that
are either labeled with actions of Player 2 or labeled witioas that are prescribed
by the strategy\;. We can also see a strategy for Player 1 as cutting out edges of
Player 1 that are not chosen by the strategy. Let us definéathmally. We call the
outcome of the strategys in the games = (L, 4, Act1, Acto, E) the set of plays

Outcome(G,A1) = {p | Vi > 0,3a € A1(p[i]) UAct2- (p[i],a,pli+1]) € E}.
A strategyA is winningfor the objectiveObj in G if Outcome(G,A;) C Obj.

Example 4Let us consider again the example of Fig. 1.2. Assume thaviteing
objective for Player 1 is to reach locatinB, i.e.Obj = Reachg({L3}). Let us con-
sider the strategy; defined as followsLO+— b, L1+ b, L2 — a, andL3+ a. It
should be clear that no matter how Player 2 plays when the siays inLO, the
result of the interaction with this stratedy is a play that reachds3. For exam-
ple, let us consider the following scenario1ifl, instead of playindgy as chosen by
Player 1, Player 2 moves the pebble to locati@nFrom there, instead of playiry
as asked by Player 1 (this would lead directiL.B), Player 2 moves the pebble to
L2. FromL2, Player 1 choosesand Player 2 has no other choices than to move the
pebble toL3. So, under any adversarial behavior of Player 2, PlayenXarae the
pebble to reach locatidrB. As a consequenca; is a winning strategy for Player 1
to win the reachability game defined by the objectg = Reachg({L3}). O

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 7

1.4 Solving two-player games

In the previous section, we have defined two-player gametstres, reachability
and safety winning objectives, strategies for Player 1,vaadhave explained when
a strategy for Player 1 is winning. In this section, we introgl the basic ideas that
are underlying algorithms for solving games with safety egathability objectives.
To understand the basic ideas behind the algorithms foirgpteachability and

safety games, we must first concentrate on what happens iroand, i.e. we need
to consider one-step objectivesofie step objectivis defined by a set of locations
T CL.Inalocatior¢ € L of the games = (L, £init, Acty, Acto, E), Player 1 wins the
one step objectivé if there exists an actioa € Act; such that all edges labeled by
o and all edges labeled withct, actions lead to a location if, i.e./ is such that

Ja € Acty VB € ActpU{a}-V(¢,B,0)eE: I €T.

In that case, we say thdtis a controllable predecessarf T, and we denote by
CPre(T) the set of locations that are controllable predecessorFs of

Example 5To illustrate the definition ofontrollable predecessarae use Fig. 1.3.
First, let us consider the set of locatiofis= {L1,L3}. The locationLO is a con-
trollable predecessor df. Indeed, inLO if Player 1 chooses, no matter what is
the choice of Player 2 (to move the pebble using an edge ldgta a or to play
an edge labeled with her own actions) the pebble will be eithel orL3 after the
round, so it will lie inT;. Second, let us consider the set of locatidns- {L1,L2}.
The locationL0 is not a controllable predecessorief Indeed, neithea nor b en-
sures that the pebble will lie if, as Player 2 can choose to gdt® usinga or u2 in
the first case, and Player 2 can decide to gbltasingul in the second case. [J

L1

LO

\ -
u2 ~--

Fig. 1.3 Controllable and uncontrollable predecessors

Now that we understand what it means for a locatida be a controllable pre-
decessor of a set of locatiofis we provide algorithms to solve reachability and
safety games. Let us start with reachability games.@G.et (L, ¢;,;t, Acty, Acto, E)

8 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, anei&in Reynier

be a two-player game structure a@tj = Reachg(T) be the reachability objective
for Player 1.

The algorithm that computes the set of winning locationgHerreachability ob-
jectiveReachg(T) works by induction on the number of rounds needed for Player 1
to win. Clearly, all the locations iff are winning in 0 rounds, let us denote this
set of locations by\p. Now, it should be clear that the set of controllable predece
sors of T are locations that are winning in 1 step. By taking the unibths set
with Wp, we obtain the set of locations from which Player 1 can foregséto T
in 0 or 1 rounds, i.e\W, =Wy U CPre(Wp). Generalizing this reasoning, we get that
W =W_; UCPre(W_1),i > 1is the set of locations from which Player 1 can force a
visit to the sefl in less than rounds. Clearly, we have thég CW; C --- CW C L.

As L is a finite set, the monotonic sequencé\hreaches a fixed poiW/ for some

k <|L| andW =W, =W_;. The seW is the set of locations from which Player 1
has a strategy to force a visitToin a finite number of steps. #,;; € W then Player
1 has a winning strategy from the initial location of the gafr®m the computation
of this sequence, we can extract a winning strategy for eitions inW as follows.
Let £ € W be such that e W,i > 1 and?¢ ¢ W_1. DefineA1(¢) to be any action
a sucha € Act; and all the edges labeled withthat leave the locatiof go to a
location that belongs to the 3&t 1; because of the definition ¥ andCPre, such
an actiona is guaranteed to exist.

Example 6Let us consider again the example of Fig. 1.2 with the reatihabb-
jectiveObj = Reachg({L3}). LetWp = {L3}, and let us compute the set of control-
lable predecessors @f. The locationd.2 andL3 are controllable predecessors of
Wo. Sow; = {L2,1L3} is the set of locations from which Player 1 can ensure a visit
in {L3} in 0 or 1 rounds. It should be clear from the computation oftetrollable
predecessors M that Player 1 has to choose the acteowhen the pebble lies on
L2. This gives a winning strategy for Player 1Iin. Now, let us consider the loca-
tions that are controllable predecessorgf This set is{L1,1.2,1.3}. Indeed inL1
Player 1 can choodeand in this case, either Player 2 moves the pebhi8tosing
edge(L1,b,L3) or she moves the pebble 1@ using the edge labeled . In the
two cases, the pebble lies §h2,1.3} when starting the next round of the game. If
we continue like that we obtain that all the location€odre winning for the objec-
tive Obj and in the process we can construct a winning strategy fyePlh O

Let us now turn to safety games. Remember that in a safety dafireed by a
setSC L of locations, Player 1 has the objective to stay withinSé&brever, i.e.
Obj = Safeg(S). Let us define, as for reachability, a sequence of sets ofitota
that approximate the set of winning locations for Playerlga@ly, W, = Sis the set
of locations from which Player 1 can ensure to stay witBifor at least O rounds.
Now, Wy =Wp N CPre(Wp) is the set of locations from which Player 1 can ensure to
stay withinSfor at least 1 round, and more generally=W_; NCPre(W_1),i > 1
is the set of locations from which Player 1 can ensure to sittymS for ta least
rounds. Clearly, we have thatDWo DW, D --- DW D --- D &. As L is a finite
set, we must reach a fixed poit for somek < |L| andW =W = W,_1, and so
the sequence eventually stabilizes on the set of locatimms ¥vhich Player 1 can

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 9

force to stay withinSforever, i.e. on the set of locations from which Player 1 has a
strategy to win the safety game defined®y

Example 7Let us consider again example of Fig. 1.2 but now with the ctbje
Obj = Safeg({Lo,L2}). So the objective for Player 1 is now to avoid locatidasnd
L3. Let us compute the sequence of sets of locations that aippatethe winning
set for Player 1. By definition of this sequen®#,= {Lo,L,}. Let us compute the
controllable predecessors of this set of locatidtRte(Wp) = {L2}. IndeedLO is
not a controllable predecessor{df0,L2} as, fromLO, Player 2 can force to move
the pebble onto the locatidril by choosing to play the edge labeled; While
L, is a controllable predecessor of the ¥gtas inL, Player 1 can move the pebble
onto the locatiorig € {Lo,L1} by playing the actiom, soW; = {L2}. And clearly,
CPre(W) = @. So, there is no location i® from which Player 1 can ensure to stay
within {LO,L2} forever and Player 1 cannot win the game.

Let us now change the objective and considey= Safeg({Lo,L1,L2}). We start
the computation witp = {Lo,L1,L2}, and comput®Vy = Wo N CPre(Wp). All the
edges leavingo reach a location iy soLg € CPre(Wp), inL; all edges of Player 2
and all edges of Player 1 labeled wilreach a location iy soL; € CPre(Wp),
and inL; all edges of Player 2 and all edges of Player 1 labeled tithach a
location inWp soLy € CPre(Wp). The sequence of sets stabilized/s= Wp, and
so Player 1 has a strategy to win the safety obje@ive= Safeg({Lo,L1,L2}) from
all locations in{Lo,Ls,L;}. O

Remark 1 The main drawback of the algorithms that we have outlinedralmthat
they compute winning information about locations that arerrecessarily reachable
by an interaction between Player 1 and Player 2 from thealrd@cation. In practice,
that can deteriorate the performances of the algorithmstérare solutions to avoid
that problem, see for example the on-the-fly algorithm of [i2it the description of
those solutions goes beyond the objectives of this introioic

1.5 Adding timeto game structures

To add time to game structures, we adapt the syntax of timieareaia as defined in
Chapter XXX and partition discrete transitions as conatallk and uncontrollable.
A timed game automatoB = (L, £iit, X, Inv, Acts, Actp, E) is a structure, where:

e L is a finite set of discrete locations afig;; is the initial location of the timed
game;

e X is a finite set of clocks, and we denote Bygnstr(X) the set ofclock con-
straints i.e. conjunctions of atomic constraints of the forms c or x—y ~ ¢,
wherec € N andx,y € X;

e Inv:L — Constr(X) is a function that labels each locatiég L with an invariant
Inv(¢) that restricts the possible values that clockX ican take when the control
of the automaton is in locatiof)

10 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, @amcefAlain Reynier

e Act; are the actions of Player Act, are the actions of Player 2 such that; N
Act; = @, andE C L x (Act; UActy) x Constr(X) x 2% x L is the set of discrete
transitions of the timed game. A tuplé a,@,R ¢') € E is a transition that goes
from location/ to location?’, that is labeled with actiom (if a € Act; then
the transition is controllable, otherwise it is uncontable), with guardp (the
transition can be taken only if the values of clocks satibfy guard), and reset
setR (the clocks in the seR are reset when the transition is taken).

L5 (Goal)

Fig. 1.4 An example of a timed game automaton

Example 8 An example of a timed game automaton is given in Fig. 1.4. Tilg o
syntactical difference with plain timed automata is indlibg the partition of the
alphabet of labels for the transitions: the transitionglat with an element ofct;
belong to Player 1, and the transitions labeled with an el¢rmoEAct, belong to
Player 2. As for untimed games, the edges controlled by Plhyse depicted by
plain edges, and the edges controlled by Player 2 are ddstdashed edges.

A state of a timed automaton is a pdi,v), where/ is a location andr is a
valuation for the clocks, i.e. a functian X — R that assigns to each clogle X
a positive real numbern(x). In a timed automaton, when the automaton is in a state
(¢,v), time can elapse as long as it does not violat€/) (the invariant that labels
£). For example in the timed game automaton of Fig. 1.4, fraaegL.0,v) with
v(x) = 1, time can elapse fdrtime units if 1+t < 2, in that case stat€.0,V) is
reached with/ (x) = v(x) +t.

Atransition(¢1,a, ¢, R, {2) can be taken in staté, v) whenever = ¢4, the guard
@ is satisfied by, which is denoted by = ¢, and the clock valuation|R := 0],

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 11

which maps a clock € X\ Rto v(x), and a clockx € Rto 0, is such that it satis-
fiesInv(fz), i.e.v[R:= 0] = Inv({2). For instance, in the timed game automaton of
Fig. 1.4, in state /o, 3), Player 2 can take the uncontrollable transitioi@s the
guard onx is satisfied E < 1.) The state that is reached after this transition is the
pair (¢2,0) as the clock is reset by this transition.

For a more systematic presentation of the semantics of thutamata, the reader
is referred to Chapter XXX. In this section, we focus on itituis and do not always
give all the formal definitions.

1.5.1 Roundsin timed games

Remember thatintimedtwo-player games are played for an infinite nhumber of
rounds. Each round is played as follows: Player 1 choosesaotien a € Acty
among the actions that label the controllable transitieasihg the location where
the pebble lieson , and then Player 2 moves the pebble by adiagsition that is
labeled either byr or by an action fromict, (an uncontrollable transition.)

In timed games, we additionally need to know at what time &adywants to
play. So in addition to an action to play, Player 1 chooseslayde Then given a
pair (t,a), Player 2 either decides to wait fotime units and to take a transition
that is labeled with the letter € Acty, and for which the guard on the transition is
satisfied, or Player 2 decides to wait for a delay &f t and use a transition labeled
by an action fronAct,, and for which the guard evaluates to true.

Example 9L et us consider the timed game automaton of Fig. 1.4. As sxékam-
ple, there are at most one controllable and one uncontteltedmsition out of each
location, we did not give names to the transitions. This eans a timed game
automaton with a reachability objective for Player 1: hegeotive is to reach the lo-
cation labeled witlgoal. Initially the pebble lies 0.0 and the value of the clock

is equal to 0. Let us assume that Player 1 proposes to waitlgfacl time unit
and to take the transition that leadsltb. In this case, the two following scenarios
are possible. Either Player 2 lets time elapse for at ledstd wnit, the value of the
clockx is then equal to 1, and the pebble can be moved on locafi@as proposed
by Player 1 (indeed, the guard 1 is satisfied.) Or, Player 2 decides to wait for
t < 1time units, and to move the pebble to locati@wusing the uncontrollable edge
fromLO toL2. Again, this is possible because after waitingtfer 1 time units, the
value ofx is less than 1 time unit, and so the guarg 1 on the transition from.0

to L2 is satisfied.

Assume for now that Player 2 follows the second scenario.piixble is now
lying onL2 and the value of clockis equal to 0 (as it has been reset when moving
the pebble using the transition frard to L2.) From that position, let us assume that
Player 1 chooses to wait f(% time units and proposes to move to locatich As
there is no alternative for Player 2, time elapses%fcbime units, and the pebble is
moved fromL2 toL3.

12 Franck Cassez, Kim Larsen, Jean-Francois Raskin, @nceFAlain Reynier

From there, Player 1 chooses to wait %)time units and proposes to move the
pebble toL1. Again, as there is no alternative for Player 2, time elarﬂee% time
units and the pebble is moved frob3 to L1. When the pebble arrives ari, the
value of the clockx is equal to% + % = 1. Then Player 1 chooses to wait say for
1‘—11 time units and to move the pebble to locateal. This is a valid move as the
value ofx is then equal to 1;11 = 2%1 and so the guard > 2 is satisfied, again
as Player 2 has no other alternatives, the pebble is moveztatidngoal, and the
play is winning for Player 1. O

When moving the pebble according to the rules defined abotimeal playof

the form (4o, Vo) (fo.20) (f1,v1) tey), lo-seny) (0n,Vn) e, s generated

by the interaction between the two players. In this timeg,@ach(t;, &) specifies
the time that has elapsed and the transition that has been daking the round

As for untimed games, objectives are defined by a set of destoveationsT C L
of the automaton that Player 1 wants to reach for reachalgifimes, or by a set
of discrete location§ C L in which Player 1 wants to stay in for safety games.
For reachability and safety objectives, it can be shownRtager 1 has a winning
strategy if and only if she has a winning memoryless straf@pyor timed games,
a memoryless strategg a functionA; : L x REO‘X‘ — R>g x Acty that specifies,
given the current state of the garfiev), the timet € R>¢ to wait and the action
o € Acty to play.

1.6 Solving two-player timed games

We have seen that, in the case of untimed games, reachatilitysafety objec-
tives can be solved using a notionadntrollable predecessar3 his notion can be
extended to timed games. Again, we do not formalize all thtaildehere but we
give enough intuition so that the reader can understand #ie ieas behind the
algorithms for solving timed games.

Intuitively, a state(¢,v) is a controllable predecessor of a set of staes
{(%o,V0), (¢1,V1), ..., (In,Vn), ... }, if there exista € Act; and a delay € R such
that the following four conditions hold:

1. for all delayst’, 0 <t' <t,v+t' = Inv(¢), i.e. time can elapse froif?,v) for t
time unit without violating the invariant labeling

2. there exists a transitian= (¢,a,®,R ¢') such thav+t = gandv+t[R:=0] =
Inv(¢'), i.e. there is a transition labelled with that can be taken aftertime
units;

3. for all transitionee= (¢, a, ¢, R ¢') such thatv+t satisfiesp, (¢,v+t[R:=0])
belongs toT, i.e. any choice of a transition labelled withtaken aftert time
units leads tdr;

4. for all transitionse = (¢,u, @,R,¢') and delayg’ such that 0<t’ <t, u € Acb,
andv+t’ satisfiesp, then(¢’,v+t'[R:= 0]) belongs tdT, i.e. any uncontrollable
transition that can be taken withirime units leads td .

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 13

The sets of states that we have to handle are infinite, so ta@yot be repre-
sented in extension. We need a symbolic data structure abieptesent infinite
sets. Those sets can be represented symbolically usingifasim an adequate con-
straint language. All sets manipulated during the compariaif the timed control-
lable predecessors are representable by union of clockremts. To illustrate the
use of clock constraints and how the computation of the odabile predecessor in
the timed setting is done, we consider our running examplégfl.4.

L3 } } } — } — } =

0o 1 2 3 X 0o 1 2 3 x 0o 1 2 3 x 0o 1 2z 3 x
L2,

0 1 2 3 X o 1 2 3 X 0 1 2 3 X o 1 2 3 x
L1, R) J—

0o 1 2 3 x o 1 2 3 x 0 1 2 3 x 0o 1 2 3 x
Lo } } } = = } =

©) @ @ 3

Fig. 1.5 Computation of the timed controllable states.

Example 10The computation of the set of winning states is depicted @ Ei5.

The first part of the picture, markéd), depicts the set of states of the fofirl, v)

with v> 1. All those states are winning in 1 step because wher, the uncontrol-
lable transition fronL.1 toL2 cannot be taken by Player 2 (as it is guarded kyl),

and by waiting until clock reaches a value equal to or greater than 2, Player 1 can
move the pebble froml to locationgoal. The part marke¢?) of the picture depicts
the set of states that are winning in at most 2 discrete stéjgsstates that have been
added are controllable predecessors of the states thatramgin 1 step. First, let

us conside(L0, V) with v(x) = 1. This state is winning as, on the one hand, none of
the uncontrollable transitions is enabled in this statd,@nthe other hand, the con-
trollable transition fronL.0 to L1 is enabled, and when it is taken the game reaches
a winning state (in 1 step.) Second, consider the set ofsstaBev) with v(x) < 1.
From all those states, Player 1 can wait uxt# 1 and then she can take the control-
lable transition td.2, reaching a set of winning states in 1 step. The statestéepic

in part(3) and(4) are computed in a similar manner. O

1.7 The Chinesejuggler control problem in UPRAAL-TIGA

UPPAAL-TIGA is a tool developed at Aalborg University. It handles timeang
automata as presented in the previous section. The tool ealownloaded from
http://www.cs.aau.dk/ ~adavid/tiga/download.html .We refer the
reader to the user manual for details about the featureshengisage of BRAAL -

TIGA in practice. In this section, we show how to model the Chifeggler control
problem with timed game automata. We use screenshots frerott to illustrate

Kim, can we add this

on the tiga web site
??7?

14 Franck Cassez, Kim Larsen, Jean-Francois Raskin, @nceFAlain Reynier

its user interface. The interested reader can download HB AL - TIGA model of
our running example fromttp://...

Note that for the sequel, we assume that the reader is familianotation of the
UPPAAL tool as described in Chapter YY. The models that are useddrergame
extensions of the BPAAL models, we make it clear what are those extensions in
the sequel.

1.7.1 Modeling of the components

A timed game in WPAAL-TIGA is modeled compositionally by defining timed
game automata that specify the behavior of the componettte gf/stem. This mod-
eling approach is similar to the one used for regular modelsiPAAL (see Chap-
ter YY for additional material on compositional modelingy in UPPAAL models,
components in BRAAL-TIGA synchronize using shared events (implemented by
channels). For the rest of this section, we assume that &akerés familiar with this
modeling paradigm.

Fig. 1.6 shows the timed automaton modelftate i< {1,2}. The timed game
automaton has the set of locatiof8table, Spinning, Longspinning, Crashed}.
The locationStable intends to model the situation when the plate is stable ghe |
cationCrashed models the situation when the plate has cras8pthning mod-
els the situation when the juggler does spin the plate spia fimet < STABSHORT
seconds (wher8TABSHORTS a constant equal to 2), ahdngspinning when
the juggler does spin the plate for more ttf&iIPABSHOReconds.

mosquito? StabTime = StabTime-1

I |
StabTime>0 | |
I !
,\ v Crashed
Stable ~—__X >= StabTime
. stopspin®
: stopspin?
?
startspin® StabTime =3, StabTime=5,
x=0 x=0 x=0

. x==STABSHORT -
Spinning Longspinning

x<=STABSHORT

Fig. 1.6 A model for the plate.

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 15

The automaton uses one clackThe use ok is twofold. First, when the control
is in locationStable , the variablex records the time elapsed since the plate was
last spun by the juggler. When the control isSpinning or Longspinning , X
records the time elapsed since the plate has last been spien tlne impulsion of
the juggler. Let us now have a look at the transitions betveeatrol locations.

First, we consider the uncontrollable transitions. Theeetao uncontrollable
transitions that leavéstable . The self loop is taken whenever the mosquito
touches the plate (this is ensured by the synchronizatistheavenmosquito?).
The effect is to substract value 1 from the integer vari&ibTime that models
the length of the time interval during which the plate is gudeed to stay stable
without being spun by the juggler. This can be done only ifghardStabTime >0
is true (making sure that the value®fabTime cannot become negative.)

The uncontrollable transition going fro8table to Crashed can be taken (by
Player 2) whenever the value of the clackxceeds the time for which the plate is
guaranteed to be stable (since the last time it has been spilne fuggler.) As this
transition is uncontrollable, Player 2 can decide to takedny time when the guard
is true. Player 2 may not take the transition immediately mthee guard becomes
true but we cannot rely on this: that is why it is an uncongiolé transition in our
model.

Second, we consider the controllable transitions. Thesitian between loca-
tionsSpinning andLongspinning is taken exactly when the valuexis equal
to STABSHORTIt accounts for the fact that the juggler is spinning theefar an
interval of more tharSTABSHORBeconds. In fact, the behavior of this transition
is deterministic and so it could have been defined as undtatite, that would not
make any difference. The other three controllable tramsdtiare related to actions
controlled by the juggler. When the plateStable , the juggler can decide to give
it more spinning by emitting the evestartspin! . This has the effect to trigger
this transition (reception of the evestartspin!) and to move the control to
locationSpinning . The control leaves the locati@pinning

e either because the juggler has decided to stop spinningi{stepspin?)
before STABSHORBeconds, in that case, the control moves back to location
Stable , the clockx is reset, and the interval for which the plate is guaranteed
to be stable is 3 seconds (upd&tabTime=3),

e or because the juggler has spun the plateSeABSHORBeconds, and the
control moves td_ongspinning . This later location is left when the event
stopspin? occurs, in that case the control moves baclStable and the
plate is guaranteed to be stable for 5 seconds (uiBtatelime=5).

This template timed game automaton is instantiated twice tone forPlate
1 and one time foPlate 2

We can now have a look at the other components of our model1Fglepicts
a model of the mosquito. The mosquito can at any time touctobtiee two plates
provided that he has not touched a plate within theDasines units (this is forced
by the guard/ > D). This last constraint is enforced using the clgakhich is reset
each time a plate is touched. The self-loop is labeled wighetrentmosquito!

.... Kim, can you pro-
vide a picture of the
winning strategy for

16 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, @amcefAlain Reynier

Turn

mosquito!
rT T T TN
I I
startspin! z>=1
y >= D : : y:O z=0 stopspin!
I I
0~
Wait
Fig. 1.7 A model for the mosquito Fig. 1.8 A model for the juggler

which is either received by Plate 1 or Plate 2. The transi8amcontrollable as it
belongs to the mosquito and not to the controller that we wasynthesize.

Finally, the juggler is modeled by the timed automaton giirefrig. 1.8. The
juggler can be in two different states that are modeled bylbwations:Wait mod-
els the situation when the juggler does not spin any of thephates,Turn models
the situation when the juggler spins one of the plates. Tkatsstartspin!
andstopspin! are synchronized with either Plate 1 or Plate 2. Clpikused to
express that the juggler should spin a plate for at least & tinit.

1.7.2 Analysis of the model

We can now analyze the model of the Chinese Juggler presebte® with the tool
UPRAAL-TIGA. We want to determine if the Juggler has a strategy to winithed
game for the safety objective ‘none of the two plates evestea™. This control
objective is expressed by the following expression in tir@ARAL -TIGA syntax:

control: A[] not (Platel.Crashed or Plate2.Crashed)

This formula asks to find a control strategy (keywaahtrol) for the juggler
such that on all resulting plays (modal#y, it is always the case (modalify) that
(Platel.Crashed or Plate2.Crashed) is false.

If we impose to the mosquito to stay away from the two platesfdeastD = 2
seconds after touching one of the plates, then the Juggtenlsirategy to win.
UPRAAL-TIGA is able to determine that property, and furthermore, thé datsm
synthesizes a winning strategy. The strategy that the yoahssizes is as follows:

Now, if we setD = 1, then the Juggler does not have a strategy to win as the

mosquito can act very fast.

the parameters as de-

scribed above ?

1.8 Conclusion

In this chapter, we have introduced the basic concepts ayuditimic ideas that
underly the automatic synthesis of discrete and timed otiets for systems mod-
eled by game automata and timed game automata. We have shatuwhé game

1 AnIntroduction to Automatic Synthesis of Discrete and Timed Controllers 17

metaphor is natural to model control problems. Even if thdeas are relatively
recent, they have been implemented into the topPALL-TIGA and they can be
applied to interesting case studies.

In the next chapter, we show how to use®AL-TIGA to automatically syn-
thesize a controller to regulate a pressure accumulatot@ngtimize its energy
consumption.

References

1. Gerd Behrmann, Agnes Cougnard, Alexandre David, EmeiaRleury, Kim Guldstrand
Larsen, and Didier Lime. Uppaal-tiga: Time for playing gamné CAV - International Con-
ference on Computer Aided Verificatjorolume 4590 olecture Notes in Computer Science
pages 121-125. Springer, 2007.

2. Franck Cassez, Alexandre David, Emmanuel Fleury, Kind&ténd Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed gsn INCONCUR - International
Conference Concurrency Theomolume 3653 ofLecture Notes in Computer Sciengages
66-80. Springer, 2005.

3. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the swishef discrete controllers for
timed systems. In E.W. Mayr and C. Puech, edit&FACS - Theoretical Aspects of Computer
Sciencevolume 900 ofLecture Notes in Computer Sciengages 229-242. Springer-Verlag,
1995.

4. Amir Pnueli and Roni Rosner. On the synthesis of a reactieelule. INPOPL - Annual
Symposium on Principles of Programming Languageges 179-190. ACM Press, 1989.

5. Peter J. Ramadge and W. Murray Wonham. Supervisory daften class of discrete-event
processesSIAM Journal of Control and Optimizatio25(1):206—-230, 1987.

