
AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Automated Planning Tools for Intelligent Decision
Making

3. AI Planning, Part I: Framework

Álvaro Torralba

Spring 2021

Thanks to Jörg Hoffmann for slide sources

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 1/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Agenda

1 AI Planning

2 The STRIPS Planning Formalism

3 Planning Complexity

4 The PDDL Language

5 Simulated Penetration Testing

6 Modular Printing System Control

7 Natural Language Generation

8 Conclusion

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 2/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Problem Solving

BUT

Deep Blue is very efficient, BUT:

Completely specialized, cannot do anything except Chess.
Excessive human domain expertise and engineering.

→ How to automate problem solving? How to build general solvers not
relying on domain-specific expertise + engineering?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 4/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Shakey the Robot (1966 - 1972)

→the first general-purpose mobile robot to be able to reason about its
own actions
Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 5/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

AI Planning

“Planning is the art and practice of thinking before acting.” — Patrik
Haslum

1 Model-based: Given a description of the environment, and the goals
of the agent

2 Sequential decision making: decide which actions to perform to
achieve the goals

3 Domain independent: Develop a general tool that can solve all
problems of this kind

Classical Planning

Deterministic

Fully observable

Static

Single-agent

Discrete

Sequential

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 6/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

So, What is (Classical) Planning Good For?

Solitaire Puzzles Logistics Molecule Synthesis

→and many others!

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 7/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Planning

Ambition:

Write one program (planner) that can solve all sequential
decision-making problems.

How do we describe our problem to the planner?

A logical description of the possible states

A logical description of the initial state I

A logical description of the goal condition G

logical description of the set A of actions in terms of preconditions
and effects

→ Solution (plan) = sequence of actions from A, transforming I into a
state that satisfies G.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 8/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Classical Planning Task

Initial state A B

Goal
A B

Actions: grab(p1), grab(p2), drop(p1), drop(p2),move(A,B)
→For each action we specify its preconditions and effect

→Find a plan: action sequence from the initial state to another where the goal holds

Satisficing planning: Find a plan as cheap as possible (no guarantees)

Optimal planning: Find a plan of minimum cost (guaranteed)

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 9/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

How to solve planning tasks? Search!

A B

A B

A B

A B

grab(p1)

grab(p2)

move(A,B)

A B

A B

drop(p1)
grab(p2)

move(A,B)

There is a lot of research on how to solve planning problems, a lot of algorithms
(search is just one option) and tools.

Today, we will focus on how to phrase our problems as planning tasks so that
we can use an existing planner to solve them!Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 10/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Our Agenda for This Chapter

The STRIPS Planning Formalism: Which concrete planning formalism
will we be using?

→ Lays the framework we’ll be looking at.

Planning Complexity: How complex is planning?

→ The price of generality is complexity. Here’s what that “price” is.

Planning Domain Definition Language: How to Use a Planner?

→ A language to rule them all.

Applications: What are you planning for?

→ A few problems we can solve (and which some people care about).

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 11/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

“STRIPS” Planning

STRIPS = Stanford Research Institute Problem Solver.

STRIPS is the simplest possible (reasonably expressive) logics-based
planning language.

STRIPS has only Boolean variables: propositional logic atoms.

Its preconditions/effects/goals are as canonical as imaginable:

Preconditions, goals: conjunctions of positive atoms.
Effects: conjunctions of literals (positive or negated atoms).

We use the common set-based notation for this simple formalism.

→ Historical note: STRIPS [?] was originally a planner, whose language
actually wasn’t quite that simple.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 13/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short
planning task, is a 4-tuple Π = (P,A, I,G) where:

P is a finite set of facts (aka propositions).

A is a finite set of actions; each a ∈ A is a triple
a = (prea, adda, dela) of subsets of P referred to as the action’s
precondition, add list, and delete list respectively; we require that
adda ∩ dela = ∅.
I ⊆ P is the initial state.

G ⊆ P is the goal.

We will often give each action a ∈ A a name (a string), and identify a
with that name.

Note: We assume unit costs for simplicity: every action has cost 1.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 14/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

“TSP” in Australia

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 15/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

STRIPS Encoding of “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.
Initial state I:

Goal G:

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea:
Add list adda:
Delete list dela:

Plan:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 16/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

STRIPS Planning: Semantics

Definition (STRIPS State Space). Let Π = (P,A, c, I,G) be a STRIPS
planning task. The state space of Π is ΘΠ = (S,A, T, I, SG) where:

The states (also world states) S = 2P are the subsets of P .

A is Π’s action set.

The transitions are T = {s a−→ s′ | prea ⊆ s, s′ = appl(s, a)}.
If prea ⊆ s, then a is applicable in s and appl(s, a) := (s ∪ adda) \ dela.
If prea 6⊆ s, then appl(s, a) is undefined.

I is Π’s initial state.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

An (optimal) plan for s ∈ S is an (optimal) solution for s in ΘΠ, i.e., a path
from s to some s′ ∈ SG. A solution for I is called a plan for Π. Π is solvable if
a plan for Π exists.

For ~a = 〈a1, . . . , an〉, appl(s,~a) := appl(. . . appl(appl(s, a1), a2) . . . , an) if
each ai is applicable in the respective state; else, appl(s,~a) is undefined.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 17/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

STRIPS Encoding of Simplified “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}.
Initial state I:

Goal G: {visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}. (Note: no “at(Sydney)”.)

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea:
Add list adda:
Delete list dela:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 18/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

STRIPS Encoding of Simplified “TSP”: State Space

→ Is this actually the state space?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 19/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

(Oh no it’s) The Blocksworld

Initial State Goal State

D

B

A

C

E

D

CBAE

Facts: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

Initial state: {onTable(E), clear(E), . . . , onTable(C), on(D,C),
clear(D), armEmpty()}.
Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

stack(x, y)?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 20/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire

Question!

Which are correct encodings (part of some correct overall
encoding) of the STRIPS Blocksworld pickup(x) action schema?

(A): ({onTable(x), clear(x),
armEmpty()},
{holding(x)},
{onTable(x)}).

(C): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty(), clear(x)}).

(B): ({onTable(x), clear(x),
armEmpty()},
{holding(x)},
{armEmpty()}).

(D): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty()}).

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 21/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Exercises

Exercise 1: STRIPS Modelling

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 22/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Algorithmic Problems in Planning

Satisficing Planning

Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.

Optimal Planning

Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

→ The techniques successful for either one of these are almost disjoint.
And satisficing planning is much more effective in practice.

→ Programs solving these problems are called (optimal) planners,
planning systems, or planning tools.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 24/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Decision Problems in (STRIPS) Planning

Definition (PlanEx). Given a STRIPS task Π, does there exists a plan for Π?
→ Corresponds to satisficing planning.

Theorem. PlanEx is PSPACE-complete.

Definition (PlanLen). Given a STRIPS task Π and an integer K, does there
exists a plan for Π of length at most K? → Corresponds to optimal planning.

Theorem. PlanLen is PSPACE-complete.

Definition (PolyPlanLen). Given a STRIPS planning task Π and an integer K
bounded by a polynomial in the size of Π, does there exists a plan for Π of
length at most K? → Corresponds to optimal planning with “small” plans.

Theorem. PolyPlanLen is NP-complete.

Example of a planning domain with exponentially long plans?

→Classical Planning is as hard as SAT if plans are of polynomial length, harder
if plans are exponentially long

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 25/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Domain-Specific PlanEx vs. PlanLen . . .

. . . is more interesting than the general case.

In general, both have the same complexity.

Within particular applications, bounded length plan existence
(optimal planning) is often harder than plan existence (satisficing
planning).

This happens in many planning competition benchmark domains:
PlanLen is NP-complete while PlanEx is in P.

For example: Blocksworld and Logistics.

→ In practice, optimal planning is (almost) never easy.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 26/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

The Blocksworld is Hard?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 27/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

The Blocksworld is Hard!

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 27/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Miconic-ADL: PlanEx is Hard

VIP: Served first.

D: Lift may only go down
when inside; similar for U.

NA: Never-alone; AT:
Attendant.

A, B: Never together in the
same elevator (!)

P: Normal passenger :-)

DVIP

U

NA

AT

B

A

P

???

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 28/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

PDDL History

Planning Domain Description Language:

A description language for planning in the STRIPS formalism and
various extensions.

Used in the International Planning Competition (IPC).

1998: PDDL [?].

2000: “PDDL subset for the 2000 competition” [?].

2002: PDDL2.1, Levels 1-3 [?].

2004: PDDL2.2 [?].

2006: PDDL3 [?].

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 30/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

PDDL Quick Facts

PDDL is not a propositional language:

Representation is lifted, using object variables to be instantiated
from a finite set of objects. (Similar to predicate logic)

Action schemas parameterized by objects.

Predicates to be instantiated with objects.

A PDDL planning task comes in two pieces:

The domain file and the problem file.

The problem file gives the objects, the initial state, and the goal
state.

The domain file gives the predicates and the action schemas; each
benchmark domain has one domain file.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 31/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

The Blocksworld in PDDL (STRIPS): Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on-table ?x) (arm-empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm-empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x)))
)
. . .

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 32/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

The Blocksworld in PDDL (STRIPS): Problem File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw-abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on-table a) (clear a)

(on-table b) (clear b)
(on-table e) (clear e)
(on-table c) (on d c) (clear d)
(arm-empty))

(:goal (and (on e c) (on c a) (on b d))))

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 33/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Fast Downward

Fast Downward is a planning system featuring a lot of algorithms. When you
run it you need to select which configuration to use:

./fast-downward.py (<domain>) <instance> --search "config"

./fast-downward.py --alias "config-alias" (<domain>) <instance>

There are A LOT of configurations. Here I list a few convenient ones:
Satisficing Planning:

What we see in the lecture:
--evaluator "hff=ff(transform=adapt costs(one))" --search

"eager greedy([hff], preferred=[hff], cost type=one)"

--alias lama-first: Good configuration

--alias lama: Good configuration (anytime)

Optimal Planning:

--search "astar(blind)": Dijkstra search

--search "astar(lmcut)": Ok configuration (though not best)

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 34/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Action Description Language (ADL)

STRIPS + ADL (Action Description Language):

Arbitrary first-order logic formulas in action preconditions and the
goal: forall, exists, or, imply, not

Conditional effects, i.e., effects that occur only if their separate
effect condition holds: when

→A useful construct is effects of the form forall-when:

(forall (?x) (when (condition) (effect))

ADL is a real headache to implement:

Most planners that do handle ADL compile it down [?]

Example FF: 7000 C lines for compilation, 2000 lines core planner.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 35/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Action Costs

(:requirements :action-costs)

Domain file:

Declare cost function

(: f u n c t i o n s
(road−l e n g t h ? l 1 ? l 2 − l o c a t i o n) − number ; o p t i o n a l
(t o t a l−c o s t) − number ; The co s t f u n c t i o n must have t h i s name

)

Declare action cost as effect:
(increase (total-cost) (road-length ?l1 ?l2))

Problem file:

(optional) Declare costs in the initial state:
(= (total-cost) 0)

(= (road-length city-3-loc-2 city-2-loc-3) 186)

Optimization criteria: (:metric minimize (total-cost))

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 36/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

PDDL Extensions

PDDL 2.1: numeric and temporal planning

PDDL 2.2: derived predicates (e.g., flow of current in an electricity
network) and timed initial literals (e.g., sunrise and sunset, shop
closing times).

PDDL 3: soft goals (e.g.goals that have a reward) and preferences
(e.g.temporal goals)

In practice, most planners only support a subset of PDDL. In this project,
you should consider:

STRIPS

Negative Preconditions

Forall-when effects

Action costs

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 37/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire

Question!

What is PDDL good for?

(A): Nothing.

(C): Those AI planning guys.

(B): Free beer.

(D): Being lazy at work.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 38/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Exercises

Exercise 2: PDDL Modelling

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 39/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 41/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

Well-established industry (roots back to the 60s).

Points out specific dangerous attacks (as opposed to vulnerability
scanners).

Pentesting tools sold by security companies, like Core Security.

→ Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

Run security checks launching exploits.

Core IMPACT uses FF for automation since 2010.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 42/82

http://www.coresecurity.com/

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Motivation for Automation

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 43/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Motivation for Automation: Wrap-Up

Simulated penetration testing serves to:

Reduce human labor.

Increase testing coverage:

Higher testing frequency.
Broader tests trying more possibilities.

Deal with the dynamics of pentesting:

More exploits.
New tools used in attacks (Client-Side, WiFi, WebApps, . . .).

→ The aim is to automate pentesting, so that the attacks can
continuously be run in the background, thus decreasing human labor
while allowing broad coverage of complex attack possibilities.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 44/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

The Turing Test, Revisited

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 45/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Simulated Pentesting at Core Security

Core IMPACT system architecture:

PlannerPlan

PDDL Description

Actions

Initial conditions

Pentesting Framework

Exploits & Attack Modules

Attack Workspace

transform

transform

execution

→ In practice, the attack plans are being used to point out to the
security team where to look.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 46/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL

Object Types:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 47/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL, ctd.

Predicates expressing connectivity:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 48/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL, ctd.

Predicates expressing configurations:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 49/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL, ctd.

Actions modeling exploits:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 50/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL, ctd.

Actions allowing to reap benefits of exploits:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 51/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Core Security PDDL, ctd.

An attack plan:

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 52/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Simulated Pentesting@Core Security: Remarks

History:

Planning domain “of this kind” (less IT-level, including also physical
actions like talking to somebody) first proposed by [?]; used as
benchmark in IPC’08 and IPC’11.

Presented encoding proposed by [?].

Used commercially by Core Security in Core INSIGHT since 2010.

Do Core Security’s customers like this?

I am told they do.

In fact, they like it so much already that Core Security is very
reluctant to invest money in making this better . . .

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 53/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire

Question!

Is the current realization @Core Security really a simulation of
what human hackers do?
(A): Yes. (B): No.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 54/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

FAI Research

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 55/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Large-Scale Printing Systems: Complex stuff already . . .

Process blank sheets of paper into anything (book/bill in folded
envelope, . . .).

Hundreds of independently controlled processing components.

Dozens of different processes active at any one time.

Online problem, new jobs come in as we go.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 57/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

. . . and now we’re making it MUCH worse!

MODULAR Large-Scale Printing Systems:

Assemble and configure components as required by customer.

No need to buy stuff you don’t want, easy to adapt as needed.

Control can no longer be pre-programmed/configured for a
particular machine.

Requires flexible software that can control anything we could build!

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 58/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Planning To the Rescue!

T
ra

n
sl

at
o

r

sheet

description

printer

model Planner

STN

Plan Manager

domain

description

problem

description

goals

plans

constraints

failures

time info

Printer
Controller

itineraries

rejections,

failures,

updates

T
ra

n
sl

at
o

r

“Planner” as opposed to “Plan Manager”: Finding a solution for the task
at any given point in time, vs. managing the updates to the task (new jobs
arriving, job cancelled due to paper jam, . . .).

“STN”: Simple Temporal Network. A constraint-based representation of
action durations and precedence constraints, identifying unresolvable
conflicts.

The rest should be self-explanatory . . .

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 59/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Empirical Performance

x-axis: jobs come in during online processing; y-axis: runtime (seconds) for
planning the new job; productivity level: runtime needed for practicability.

“no mutex”: without h2 heuristic function.
→ h2 is the key element making this work!

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 60/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Current/Future FAI Research

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 61/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Natural Language Generation (NLG)

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

Input: Grammar, intended meaning.

Output: Sentence implementing meaning.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 63/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG as Planning, Remarks

Historical:

Long-standing historical connection between NLG and Planning (first
mentioned in early 80s).

Resurrected in 2007, after long silence, thanks to efficiency of heuristic
search planners like FF [?].

Encoding below proposed by [?].

Main advantages of planning in this application:

Rapid development (try to develop a language generator yourself . . .).

Flexibility (grammar/knowledge changes handled automatically).

Seamless combination with other tasks (like text planning).

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 64/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG

(Model-based) NLG in General:

Given semantic representation (formula) and grammar, compute
sentence that expresses this semantics.

Standard problem in natural language processing, many different
approaches exist.

NLG here:

NLG with tree-adjoining grammars (TAG) [?].

Grammar given in form of finite set of elementary trees.

Problem instance given by grammar, knowledge base, and a set of
ground atoms which the sentence should express.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 65/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

“S:e” stands for sentence referring to event e.

“NP:r1 ↓” stands for a noun phrase referring to r1, which must be
substituted here.

[“VP:e” and “V:e” stand for a verb phrase referring to e, and can
be used to adjoin further trees (not detailed here).]

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 66/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

Is this a complete sentence derivation?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 67/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

This is a substitution operation (purple dashed arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 68/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

Is this a complete sentence derivation?

Does the sentence express the desired meaning?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 69/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

sleep(e, r1)

rabbit(r1) white(r1)

This is an adjunction operation (blue dotted arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 70/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

sleep(e, r1)

rabbit(r1) white(r1)

Is this a complete sentence derivation?

Does the sentence express the desired meaning?

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 71/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

The outcome of our substitution and adjunction operations here.

To obtain the desired sentence, read off the leaves from left to right.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 72/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

. . . and now in PDDL!

From [?], slightly simplified:

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

“u, u′”: nodes in grammar trees
“x”: event
“x′”: sentence subject

rabbit(u′, x′):
pre: subst(NP , u′), ref (u′, x′), rabbit(x′)
eff: ¬subst(NP , u′), canadjoin(N , u′),

∀y.¬rabbit(y)→ ¬distractor(u′, y)

white(u′, x′):
pre: canadjoin(N , u′), ref (u′, x′), white(x′)

eff: ∀y.¬white(y)→ ¬distractor(u′, y)

Initial state: subst(S , u0), ref (u0, e), sleep(e, r1), rabbit(r1), . . .
Goal: expressed(sleep, e, r1)

∀u∀x.¬subst(u, x)
∀u∀x.¬distractor(u, x)

Plan: 〈sleeps(u0, u1, e, r1), rabbit(u1, r1), white(u1, r1)〉.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 73/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire

Question!

In the action “sleeps(u, u′, x, x′)”, what for do we need the effect
literal “¬subst(S , u)”?

(A): So we don’t fall asleep.

(C): To mark the subject of S as
being open.

(B): So the rabbit does not fall
asleep.

(D): To mark S itself as closed.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

sleep(e, r1)

rabbit(r1) white(r1)

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 74/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire, ctd.

Question!

When we apply the action “sleeps(u0, u1, e, r1)” in our plan, what
does “u1” stand for?

(A): The verb phrase.

(C): The node “NP:r1 ↓” in the
verb-phrase tree.

(B): The noun phrase.

(D): The tree representing the
noun phrase.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

sleep(e, r1)

rabbit(r1) white(r1)

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 75/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

FAI Research

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 76/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Summary

Ambition:

Write one program (planner) that can solve all sequential
decision-making problems.

Trade-off: generality vs. efficiency

We have seen the simplest form of planning:

Underlying formalism: STRIPS

Language for Tools: PDDL

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 78/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Summary

Thanks to the efficiency of heuristic search planning techniques,
planning is being applied in a broad variety of applications today.

Simulated penetration testing is used for regular network security
checks, and is commercially employed with FF as the underlying
planner. http:

//fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf

Flexible printer system control is required for large-scale configurable
printing systems, and can be successfully tackled using a temporal
variant of the planning heuristic h2.
https://jair.org/index.php/jair/article/view/10693

Natural language generation involves constructing sentences, and
can be successfully encoded into PDDL using FF.
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 79/82

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf
https://jair.org/index.php/jair/article/view/10693
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Further Reading

There is a book on PDDL:
An Introduction to the Planning Domain Definition Language
http://www.morganclaypoolpublishers.com/catalog_Orig/

product_info.php?products_id=1384

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 80/82

http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384
http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Remarks

There’s quite a range of further application areas:

Greenhouse logistics involves moving a series of conveyor belts to
cater for the needs of all the plants [?].

Plan recognition involves observing (some of) the actions of an
agent, and inferring what the goal is [?].

Business process management involves creating, maintaining, and
executing complex processes across large enterprises; planning can
be used to automatically generate process templates [?].

Software model checking involves (amongst others) finding bugs;
this can be formulated as finding a plan to an error state [?].

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 81/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

References I

Fahiem Bacchus. Subset of PDDL for the AIPS2000 Planning Competition. The
AIPS-00 Planning Competition Comitee, 2000.

Mark Boddy, Jonathan Gohde, Tom Haigh, and Steven Harp. Course of action
generation for cyber security using classical planning. In Susanne Biundo, Karen
Myers, and Kanna Rajan, editors, Proceedings of the 15th International Conference
on Automated Planning and Scheduling (ICAPS-05), pages 12–21, Monterey, CA,
USA, 2005. AAAI Press.

Richard E. Fikes and Nils Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In S. Steel and R. Alami, editors, Proceedings of the 4th
European Conference on Planning (ECP’97), pages 221–233. Springer-Verlag, 1997.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 82/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

References II

Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artificial Intelligence,
173(5-6):619–668, 2009.

Malte Helmert and Hauke Lasinger. The Scanalyzer domain: Greenhouse logistics as a
planning problem. In Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and
Henry A. Kautz, editors, Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), pages 234–237. AAAI Press,
2010.

Jörg Hoffmann and Stefan Edelkamp. The deterministic part of ipc-4: An overview.
Journal of Artificial Intelligence Research, 24:519–579, 2005.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann, Ingo Weber, and Frank Michael Kraft. SAP speaks PDDL: Exploiting
a software-engineering model for planning in business process management. Journal
of Artificial Intelligence Research, 44:587–632, 2012.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 83/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

References III

Alexander Koller and Jörg Hoffmann. Waking up a sleeping rabbit: On
natural-language sentence generation with FF. In Ronen I. Brafman, Hector
Geffner, Jörg Hoffmann, and Henry A. Kautz, editors, Proceedings of the 20th
International Conference on Automated Planning and Scheduling (ICAPS’10),
pages 238–241. AAAI Press, 2010.

Alexander Koller and Matthew Stone. Sentence generation as a planning problem. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics (ACL 2007), pages 336–343. The Association for Computational
Linguistics, 2007.

Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor, Proceedings of the 13th International SPIN Workshop (SPIN 2006), volume
3925 of Lecture Notes in Computer Science, pages 35–52. Springer-Verlag, 2006.

Jorge Lucangeli, Carlos Sarraute, and Gerardo Richarte. Attack planning in the real
world. In Proceedings of the 2nd Workshop on Intelligent Security (SecArt’10),
2010.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 84/82

AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

References IV

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. The PDDL Planning Domain Definition
Language. The AIPS-98 Planning Competition Comitee, 1998.

Miquel Raḿırez and Hector Geffner. Plan recognition as planning. In Craig Boutilier,
editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1778–1783, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 85/82

	AI Planning
	

	The STRIPS Planning Formalism
	

	Planning Complexity
	

	The PDDL Language
	

	Simulated Penetration Testing
	

	Modular Printing System Control
	

	Natural Language Generation
	

	Conclusion
	

	

