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Problem Solving

BUT

Deep Blue is very efficient, BUT:

Completely specialized, cannot do anything except Chess.
Excessive human domain expertise and engineering.

→ How to automate problem solving? How to build general solvers not
relying on domain-specific expertise + engineering?
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Shakey the Robot (1966 - 1972)

→the first general-purpose mobile robot to be able to reason about its
own actions
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AI Planning

“Planning is the art and practice of thinking before acting.” — Patrik
Haslum

1 Model-based: Given a description of the environment, and the goals
of the agent

2 Sequential decision making: decide which actions to perform to
achieve the goals

3 Domain independent: Develop a general tool that can solve all
problems of this kind

Classical Planning

Deterministic

Fully observable

Static

Single-agent

Discrete

Sequential
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So, What is (Classical) Planning Good For?

Solitaire Puzzles Logistics Molecule Synthesis

→and many others!
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Planning

Ambition:

Write one program (planner) that can solve all sequential
decision-making problems.

How do we describe our problem to the planner?

A logical description of the possible states

A logical description of the initial state I

A logical description of the goal condition G

logical description of the set A of actions in terms of preconditions
and effects

→ Solution (plan) = sequence of actions from A, transforming I into a
state that satisfies G.
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Classical Planning Task

Initial state A B

Goal
A B

Actions: grab(p1), grab(p2), drop(p1), drop(p2),move(A,B)
→For each action we specify its preconditions and effect

→Find a plan: action sequence from the initial state to another where the goal holds

Satisficing planning: Find a plan as cheap as possible (no guarantees)

Optimal planning: Find a plan of minimum cost (guaranteed)
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How to solve planning tasks? Search!

A B

A B

A B

A B

grab(p1)

grab(p2)

move(A,B)

A B

A B

drop(p1)
grab(p2)

move(A,B)

There is a lot of research on how to solve planning problems, a lot of algorithms
(search is just one option) and tools.

Today, we will focus on how to phrase our problems as planning tasks so that
we can use an existing planner to solve them!Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 10/82
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Our Agenda for This Chapter

The STRIPS Planning Formalism: Which concrete planning formalism
will we be using?

→ Lays the framework we’ll be looking at.

Planning Complexity: How complex is planning?

→ The price of generality is complexity. Here’s what that “price” is.

Planning Domain Definition Language: How to Use a Planner?

→ A language to rule them all.

Applications: What are you planning for?

→ A few problems we can solve (and which some people care about).
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“STRIPS” Planning

STRIPS = Stanford Research Institute Problem Solver.

STRIPS is the simplest possible (reasonably expressive) logics-based
planning language.

STRIPS has only Boolean variables: propositional logic atoms.

Its preconditions/effects/goals are as canonical as imaginable:

Preconditions, goals: conjunctions of positive atoms.
Effects: conjunctions of literals (positive or negated atoms).

We use the common set-based notation for this simple formalism.

→ Historical note: STRIPS [?] was originally a planner, whose language
actually wasn’t quite that simple.
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STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short
planning task, is a 4-tuple Π = (P,A, I,G) where:

P is a finite set of facts (aka propositions).

A is a finite set of actions; each a ∈ A is a triple
a = (prea, adda, dela) of subsets of P referred to as the action’s
precondition, add list, and delete list respectively; we require that
adda ∩ dela = ∅.
I ⊆ P is the initial state.

G ⊆ P is the goal.

We will often give each action a ∈ A a name (a string), and identify a
with that name.

Note: We assume unit costs for simplicity: every action has cost 1.
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“TSP” in Australia
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STRIPS Encoding of “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.
Initial state I:

Goal G:

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea:
Add list adda:
Delete list dela:

Plan:
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STRIPS Planning: Semantics

Definition (STRIPS State Space). Let Π = (P,A, c, I,G) be a STRIPS
planning task. The state space of Π is ΘΠ = (S,A, T, I, SG) where:

The states (also world states) S = 2P are the subsets of P .

A is Π’s action set.

The transitions are T = {s a−→ s′ | prea ⊆ s, s′ = appl(s, a)}.
If prea ⊆ s, then a is applicable in s and appl(s, a) := (s ∪ adda) \ dela.
If prea 6⊆ s, then appl(s, a) is undefined.

I is Π’s initial state.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

An (optimal) plan for s ∈ S is an (optimal) solution for s in ΘΠ, i.e., a path
from s to some s′ ∈ SG. A solution for I is called a plan for Π. Π is solvable if
a plan for Π exists.

For ~a = 〈a1, . . . , an〉, appl(s,~a) := appl(. . . appl(appl(s, a1), a2) . . . , an) if
each ai is applicable in the respective state; else, appl(s,~a) is undefined.
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STRIPS Encoding of Simplified “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}.
Initial state I:

Goal G: {visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}. (Note: no “at(Sydney)”.)

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea:
Add list adda:
Delete list dela:
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STRIPS Encoding of Simplified “TSP”: State Space

→ Is this actually the state space?
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(Oh no it’s) The Blocksworld

Initial State Goal State

D

B

A

C

E

D

CBAE

Facts: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

Initial state: {onTable(E), clear(E), . . . , onTable(C), on(D,C),
clear(D), armEmpty()}.
Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

stack(x, y)?
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Questionnaire

Question!

Which are correct encodings (part of some correct overall
encoding) of the STRIPS Blocksworld pickup(x) action schema?

(A): ({onTable(x), clear(x),
armEmpty()},
{holding(x)},
{onTable(x)}).

(C): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty(), clear(x)}).

(B): ({onTable(x), clear(x),
armEmpty()},
{holding(x)},
{armEmpty()}).

(D): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty()}).
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Exercises

Exercise 1: STRIPS Modelling
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Algorithmic Problems in Planning

Satisficing Planning

Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.

Optimal Planning

Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

→ The techniques successful for either one of these are almost disjoint.
And satisficing planning is much more effective in practice.

→ Programs solving these problems are called (optimal) planners,
planning systems, or planning tools.
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Decision Problems in (STRIPS) Planning

Definition (PlanEx). Given a STRIPS task Π, does there exists a plan for Π?
→ Corresponds to satisficing planning.

Theorem. PlanEx is PSPACE-complete.

Definition (PlanLen). Given a STRIPS task Π and an integer K, does there
exists a plan for Π of length at most K? → Corresponds to optimal planning.

Theorem. PlanLen is PSPACE-complete.

Definition (PolyPlanLen). Given a STRIPS planning task Π and an integer K
bounded by a polynomial in the size of Π, does there exists a plan for Π of
length at most K? → Corresponds to optimal planning with “small” plans.

Theorem. PolyPlanLen is NP-complete.

Example of a planning domain with exponentially long plans?

→Classical Planning is as hard as SAT if plans are of polynomial length, harder
if plans are exponentially long
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Domain-Specific PlanEx vs. PlanLen . . .

. . . is more interesting than the general case.

In general, both have the same complexity.

Within particular applications, bounded length plan existence
(optimal planning) is often harder than plan existence (satisficing
planning).

This happens in many planning competition benchmark domains:
PlanLen is NP-complete while PlanEx is in P.

For example: Blocksworld and Logistics.

→ In practice, optimal planning is (almost) never easy.
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The Blocksworld is Hard?
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The Blocksworld is Hard!
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Miconic-ADL: PlanEx is Hard

VIP: Served first.

D: Lift may only go down
when inside; similar for U.

NA: Never-alone; AT:
Attendant.

A, B: Never together in the
same elevator (!)

P: Normal passenger :-)

DVIP

U

NA

AT

B

A

P

???
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PDDL History

Planning Domain Description Language:

A description language for planning in the STRIPS formalism and
various extensions.

Used in the International Planning Competition (IPC).

1998: PDDL [?].

2000: “PDDL subset for the 2000 competition” [?].

2002: PDDL2.1, Levels 1-3 [?].

2004: PDDL2.2 [?].

2006: PDDL3 [?].
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PDDL Quick Facts

PDDL is not a propositional language:

Representation is lifted, using object variables to be instantiated
from a finite set of objects. (Similar to predicate logic)

Action schemas parameterized by objects.

Predicates to be instantiated with objects.

A PDDL planning task comes in two pieces:

The domain file and the problem file.

The problem file gives the objects, the initial state, and the goal
state.

The domain file gives the predicates and the action schemas; each
benchmark domain has one domain file.
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The Blocksworld in PDDL (STRIPS): Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on-table ?x) (arm-empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm-empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x)))
)
. . .
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The Blocksworld in PDDL (STRIPS): Problem File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw-abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on-table a) (clear a)

(on-table b) (clear b)
(on-table e) (clear e)
(on-table c) (on d c) (clear d)
(arm-empty))

(:goal (and (on e c) (on c a) (on b d))))
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Fast Downward

Fast Downward is a planning system featuring a lot of algorithms. When you
run it you need to select which configuration to use:

./fast-downward.py (<domain>) <instance> --search "config"

./fast-downward.py --alias "config-alias" (<domain>) <instance>

There are A LOT of configurations. Here I list a few convenient ones:
Satisficing Planning:

What we see in the lecture:
--evaluator "hff=ff(transform=adapt costs(one))" --search

"eager greedy([hff], preferred=[hff], cost type=one)"

--alias lama-first: Good configuration

--alias lama: Good configuration (anytime)

Optimal Planning:

--search "astar(blind)": Dijkstra search

--search "astar(lmcut)": Ok configuration (though not best)
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Action Description Language (ADL)

STRIPS + ADL (Action Description Language):

Arbitrary first-order logic formulas in action preconditions and the
goal: forall, exists, or, imply, not

Conditional effects, i.e., effects that occur only if their separate
effect condition holds: when

→A useful construct is effects of the form forall-when:

(forall (?x) (when (condition) (effect))

ADL is a real headache to implement:

Most planners that do handle ADL compile it down [?]

Example FF: 7000 C lines for compilation, 2000 lines core planner.
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Action Costs

(:requirements :action-costs)

Domain file:

Declare cost function

( : f u n c t i o n s
( road−l e n g t h ? l 1 ? l 2 − l o c a t i o n ) − number ; o p t i o n a l
( t o t a l−c o s t ) − number ; The co s t f u n c t i o n must have t h i s name

)

Declare action cost as effect:
(increase (total-cost) (road-length ?l1 ?l2))

Problem file:

(optional) Declare costs in the initial state:
(= (total-cost) 0)

(= (road-length city-3-loc-2 city-2-loc-3) 186)

Optimization criteria: (:metric minimize (total-cost))
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PDDL Extensions

PDDL 2.1: numeric and temporal planning

PDDL 2.2: derived predicates (e.g., flow of current in an electricity
network) and timed initial literals (e.g., sunrise and sunset, shop
closing times).

PDDL 3: soft goals (e.g.goals that have a reward) and preferences
(e.g.temporal goals)

In practice, most planners only support a subset of PDDL. In this project,
you should consider:

STRIPS

Negative Preconditions

Forall-when effects

Action costs

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 37/82



AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire

Question!

What is PDDL good for?

(A): Nothing.

(C): Those AI planning guys.

(B): Free beer.

(D): Being lazy at work.
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Exercises

Exercise 2: PDDL Modelling
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Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker
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Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

Well-established industry (roots back to the 60s).

Points out specific dangerous attacks (as opposed to vulnerability
scanners).

Pentesting tools sold by security companies, like Core Security.

→ Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

Run security checks launching exploits.

Core IMPACT uses FF for automation since 2010.

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 42/82

http://www.coresecurity.com/


AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Motivation for Automation
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Motivation for Automation: Wrap-Up

Simulated penetration testing serves to:

Reduce human labor.

Increase testing coverage:

Higher testing frequency.
Broader tests trying more possibilities.

Deal with the dynamics of pentesting:

More exploits.
New tools used in attacks (Client-Side, WiFi, WebApps, . . . ).

→ The aim is to automate pentesting, so that the attacks can
continuously be run in the background, thus decreasing human labor
while allowing broad coverage of complex attack possibilities.
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The Turing Test, Revisited
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Simulated Pentesting at Core Security

Core IMPACT system architecture:

PlannerPlan

PDDL Description

Actions

Initial conditions

Pentesting Framework

Exploits & Attack Modules

Attack Workspace

transform

transform

execution

→ In practice, the attack plans are being used to point out to the
security team where to look.
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Core Security PDDL

Object Types:
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Core Security PDDL, ctd.

Predicates expressing connectivity:
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Core Security PDDL, ctd.

Predicates expressing configurations:
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Core Security PDDL, ctd.

Actions modeling exploits:
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Core Security PDDL, ctd.

Actions allowing to reap benefits of exploits:
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Core Security PDDL, ctd.

An attack plan:
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Simulated Pentesting@Core Security: Remarks

History:

Planning domain “of this kind” (less IT-level, including also physical
actions like talking to somebody) first proposed by [?]; used as
benchmark in IPC’08 and IPC’11.

Presented encoding proposed by [?].

Used commercially by Core Security in Core INSIGHT since 2010.

Do Core Security’s customers like this?

I am told they do.

In fact, they like it so much already that Core Security is very
reluctant to invest money in making this better . . .
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Questionnaire

Question!

Is the current realization @Core Security really a simulation of
what human hackers do?
(A): Yes. (B): No.
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FAI Research
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Large-Scale Printing Systems: Complex stuff already . . .

Process blank sheets of paper into anything (book/bill in folded
envelope, . . . ).

Hundreds of independently controlled processing components.

Dozens of different processes active at any one time.

Online problem, new jobs come in as we go.
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. . . and now we’re making it MUCH worse!

MODULAR Large-Scale Printing Systems:

Assemble and configure components as required by customer.

No need to buy stuff you don’t want, easy to adapt as needed.

Control can no longer be pre-programmed/configured for a
particular machine.

Requires flexible software that can control anything we could build!
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Planning To the Rescue!

T
ra

n
sl

at
o

r

sheet

description

printer

model Planner

STN

Plan Manager

domain 

description

problem

description

goals

plans

constraints

failures

time info

Printer
Controller

itineraries

rejections,

failures,

updates

T
ra

n
sl

at
o

r

“Planner” as opposed to “Plan Manager”: Finding a solution for the task
at any given point in time, vs. managing the updates to the task (new jobs
arriving, job cancelled due to paper jam, . . . ).

“STN”: Simple Temporal Network. A constraint-based representation of
action durations and precedence constraints, identifying unresolvable
conflicts.

The rest should be self-explanatory . . .
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Empirical Performance

x-axis: jobs come in during online processing; y-axis: runtime (seconds) for
planning the new job; productivity level: runtime needed for practicability.

“no mutex”: without h2 heuristic function.
→ h2 is the key element making this work!
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Current/Future FAI Research
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Natural Language Generation (NLG)

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

Input: Grammar, intended meaning.

Output: Sentence implementing meaning.
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NLG as Planning, Remarks

Historical:

Long-standing historical connection between NLG and Planning (first
mentioned in early 80s).

Resurrected in 2007, after long silence, thanks to efficiency of heuristic
search planners like FF [?].

Encoding below proposed by [?].

Main advantages of planning in this application:

Rapid development (try to develop a language generator yourself . . . ).

Flexibility (grammar/knowledge changes handled automatically).

Seamless combination with other tasks (like text planning).
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NLG with TAG

(Model-based) NLG in General:

Given semantic representation (formula) and grammar, compute
sentence that expresses this semantics.

Standard problem in natural language processing, many different
approaches exist.

NLG here:

NLG with tree-adjoining grammars (TAG) [?].

Grammar given in form of finite set of elementary trees.

Problem instance given by grammar, knowledge base, and a set of
ground atoms which the sentence should express.
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NLG with TAG: Example

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

“S:e” stands for sentence referring to event e.

“NP:r1 ↓” stands for a noun phrase referring to r1, which must be
substituted here.

[“VP:e” and “V:e” stand for a verb phrase referring to e, and can
be used to adjoin further trees (not detailed here).]
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

Is this a complete sentence derivation?
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

This is a substitution operation (purple dashed arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

Is this a complete sentence derivation?

Does the sentence express the desired meaning?
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

This is an adjunction operation (blue dotted arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

Is this a complete sentence derivation?

Does the sentence express the desired meaning?
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NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

The outcome of our substitution and adjunction operations here.

To obtain the desired sentence, read off the leaves from left to right.
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. . . and now in PDDL!

From [?], slightly simplified:

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

“u, u′”: nodes in grammar trees
“x”: event
“x′”: sentence subject

rabbit(u′, x′):
pre: subst(NP , u′), ref (u′, x′), rabbit(x′)
eff: ¬subst(NP , u′), canadjoin(N , u′),

∀y.¬rabbit(y)→ ¬distractor(u′, y)

white(u′, x′):
pre: canadjoin(N , u′), ref (u′, x′), white(x′)

eff: ∀y.¬white(y)→ ¬distractor(u′, y)

Initial state: subst(S , u0), ref (u0, e), sleep(e, r1), rabbit(r1), . . .
Goal: expressed(sleep, e, r1)

∀u∀x.¬subst(u, x)
∀u∀x.¬distractor(u, x)

Plan: 〈sleeps(u0, u1, e, r1), rabbit(u1, r1), white(u1, r1)〉.
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Questionnaire

Question!

In the action “sleeps(u, u′, x, x′)”, what for do we need the effect
literal “¬subst(S , u)”?

(A): So we don’t fall asleep.

(C): To mark the subject of S as
being open.

(B): So the rabbit does not fall
asleep.

(D): To mark S itself as closed.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 74/82



AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Questionnaire, ctd.

Question!

When we apply the action “sleeps(u0, u1, e, r1)” in our plan, what
does “u1” stand for?

(A): The verb phrase.

(C): The node “NP:r1 ↓” in the
verb-phrase tree.

(B): The noun phrase.

(D): The tree representing the
noun phrase.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)
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FAI Research
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Summary

Ambition:

Write one program (planner) that can solve all sequential
decision-making problems.

Trade-off: generality vs. efficiency

We have seen the simplest form of planning:

Underlying formalism: STRIPS

Language for Tools: PDDL
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Summary

Thanks to the efficiency of heuristic search planning techniques,
planning is being applied in a broad variety of applications today.

Simulated penetration testing is used for regular network security
checks, and is commercially employed with FF as the underlying
planner. http:

//fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf

Flexible printer system control is required for large-scale configurable
printing systems, and can be successfully tackled using a temporal
variant of the planning heuristic h2.
https://jair.org/index.php/jair/article/view/10693

Natural language generation involves constructing sentences, and
can be successfully encoded into PDDL using FF.
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf

Álvaro Torralba Automated Planning Tools for Intelligent Decision Making Chapter 3: AI Planning 79/82

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf
https://jair.org/index.php/jair/article/view/10693
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf


AI Planning STRIPS Complexity PDDL Simulated Pentesting Printer Language Generation Conclusion

Further Reading

There is a book on PDDL:
An Introduction to the Planning Domain Definition Language
http://www.morganclaypoolpublishers.com/catalog_Orig/

product_info.php?products_id=1384
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Remarks

There’s quite a range of further application areas:

Greenhouse logistics involves moving a series of conveyor belts to
cater for the needs of all the plants [?].

Plan recognition involves observing (some of) the actions of an
agent, and inferring what the goal is [?].

Business process management involves creating, maintaining, and
executing complex processes across large enterprises; planning can
be used to automatically generate process templates [?].

Software model checking involves (amongst others) finding bugs;
this can be formulated as finding a plan to an error state [?].
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