
Optimisation and tools

Linear programming, Integer programming and
combinatorial optimisation

Mohamed EL YAFRANI

• Postdoc researcher @ Operations Research group - AAU

• Background and research interests:
• Computer science

• Combinatorial optimisation

• Metaheuristics and evolutionary computation

Outline

• Linear programming
• Gentle introduction with simple examples

• Integer programming
• Gentle introduction
• The branch & bound algorithms

• Combinatorial optimisation and metaheuristics
• Combinatorial optimisation and the computational burden
• Constructive algorithms and local search
• Metaheuristics

Linear programming

Problem solving cycle

Real-world
problem

Mathematical
problem

Solution

Mathematical
modelling

Problem
solving:

algorithms,
analysis,

testing, etc.

Implement
solution in
real-world

• Linear programming (LP) is

• a widely used mathematical technique for modelling and problem solving

• designed to help managers in planning and decision-making

• a technique that can help in resource allocation, routing, scheduling, etc.

• Linear means the equations and functions used in modelling the problems are
linear

• Programming refers to modelling and solving a problem mathematically

Linear programming

• All problems seek to maximise or minimise some quantity

• e.g. maximise profit, minimise cost, minimise risk, etc.

• This quantity is called the objective function

• The presence of restrictions limits the degree to which we can pursue
our objective

• These limits are called constraints

• Constraints are expressed as equations or inequalities

• There must be alternative courses of action to choose from

• The problem has more than one possible solution

• The objective and constraints in linear programming problems must be
expressed in terms of linear equations or inequalities

Linear programming – properties

Certainty:
• Values in the objective function and constraints are known with certainty and do not change

during the period being studied
Proportionality:
• Exists in the objective and constraints
• Constancy between production increases and resource utilisation
Additivity:
• The total of all activities equals the sum of the individual activities

Divisibility:

• Solutions do not need to be whole numbers (integers)

• Solutions are divisible, and may take any fractional value

Non-negativity:

• All answers (decision variables) are ≥ zero

• Negative values of physical quantities are impossible

Linear programming – important assumptions

• Formulating a linear program involves developing a mathematical
model to represent the problem.

• Once the problem is understood, begin to develop the
mathematical statement of the problem.

• Steps in formulating LP problems:

1. Completely understand the problem being faced

2. Identify the objective and the constraints

3. Define the decision variables

4. Use the decision variables to write mathematical expressions for the objective
function and the constraints

Linear programming – formulation

A typical example of a LP problem is the Product Mix problem:

• Two or more products are usually produced using limited resources such
as personnel, machines, raw materials, and so on.

• The profit that the firm seeks to maximise is based on the profit contribution
per unit of each product.

• The company would like to determine how many units of each product it
should produce so as to maximise overall profit given its limited resources.

Linear programming – a simple example

Product Mix problem Tables and Chairs

• The problem faced is what to produce?

• More concretely: how many tables and how many chairs to produce?

Linear programming – a simple example

Department Tables Chairs Available hours

Carpentry 4 3 240

Painting &
varniching

2 1 100

$7 $5

Hours required to
produce one unit

Resource limits

Profit per unit

• Identifying the objectives:

• In this example, the objective is to maximise profit

• And the constraints:

• Hours of carpentry time used ≤ 240 hrs. per week

• Hours of painting & varnishing used ≤ 100 hrs. per week.

Linear programming – a simple example

Define the decision variables:

Let:

T be the number of tables produced each week

C be the number of chairs produced each week

Linear programming – a simple example

Maximise 7T + 5C

Subject to: 4T + 3C ≤ 240 (Carpentry)

2T + 1C ≤ 100 (Painting & Varnishing)

T ≥ 0 (1st nonnegative cons)

C ≥ 0 (2nd nonnegative cons)

Notice that:

• the units have been disregarded

• decision variables are kept on one side of the inequality

Linear programming – a simple example

Maximise 7T + 5C

Subject to: 4T + 3C ≤ 240 (Carpentry)

2T + 1C ≤ 100 (Painting & Varnishing)

T ≥ 0 (1st nonnegative cons)

C ≥ 0 (2nd nonnegative cons)

Notice that:

• the units have been disregarded

• decision variables are kept on one side of the inequality

Linear programming – a simple example

Right Hand Side
(RHS)

• When only two decision variables exist, the simplest method for
solving the problem might be the graphical solution approach.

• The graphical method works only when there are two decision
variables, but it provides valuable insight into how larger problems
are structured.

• Most real-world problems involve multiple decision variables and
sometimes multiple objectives as well.

Linear programming – graphical method

Corner Point Solution Method

• Approach to solve LP problems with two decision variables

• It involves looking at the profit at every corner point of the feasible
region

• The mathematical theory behind LP is that the optimal solution must
lie at one of the corner points in the feasible region

Linear programming – graphical method

Steps in using the corner point method for solving LP problems

1. Graph all constraints and find the feasible region

2. Find the corner points of the feasible region

3. Compute the profit (or cost) at each of the feasible corner points

4. Select the corner point with the best value of the objective
function found in step 3. This is the optimal solution

Linear programming – graphical method

Linear programming – graphical method

Number of tables

N
u

m
b

er
 o

f c
h

ai
rs

4T + 3C ≤ 240

2T + 1C ≤ 100

Linear programming – graphical method

Number of tables

N
u

m
b

er
 o

f c
h

ai
rs

Feasible
region

• The feasible region for the problem is a four-sided polygon with four corner, or
extreme, points.

• These points are labeled 1, 2, 3 and 4 on the next graph.

• To find the (T, C) values producing the maximum profit, find the coordinates of
each corner point and test their profit levels.

Point 1: (T = 0,C = 0) profit = $7(0) + $5(0) = $0

Point 2: (T = 0,C = 80) profit = $7(0) + $5(80) = $400

Point 3: (T = 30,C = 40) profit = $7(30) + $5(40) = $410

Point 4: (T = 50, C = 0) profit = $7(50) + $5(0) = $350

Linear programming – graphical method

Linear programming – graphical method

Number of tables

N
u

m
b

er
 o

f c
h

ai
rs

Feasible
region

1

2

3

4

• Several special cases might occur when applying the graphical
solution to a particular LP:

1. Infeasibility

2. Unbounded Solutions

3. Multiple Optimal Solutions

4. Redundancy in constraints

Linear programming – Special cases

Integer programming

Integer programming

• Integer programming is the extension of LP that solves problems
requiring integer solutions

• Many situations exists where decimal values of a particular
decision variable do not give a feasible solution

• E.g., consider the optimal ordering policy problem: ordering 2.42
computers is not feasible

• The number of computer should be a whole number (integer)

Integer programming – variants

There are three types of integer programs:

• (Pure) Integer Programming: all variables are required to have
integer values

• Mixed-Integer Programming (MIP): some, but not all, of
the decision variables are required to have integer values

• 0-1 Integer Programming: a special case in which all the
decision variables must have integer solution values of 0 or 1

Integer programming – solving IPs

• Rounding off is one way to reach integer solution values, but it often
does not yield the best solution

• An important concept to understand is that an integer programming
solution can never be better than the solution to the same
LP problem

• The integer problem is usually worse in terms of higher cost or lower profit

Integer programming – solving IPs

• Consider the following mixed product problem:

Maximise 7X1 + 6X2

subject to:

2X1 + 3X2 ≤ 12 (wiring hours)

6X1 + 5X2 ≤ 30 (assembly hours)

X1, X2 ≥ 0 (nonnegative)

where:

X1 = number of chandeliers produced

X2 = number of ceiling fans produced

• Since we only have two decision variables, we can use the graphical approach to
solve the LP

• This will also amply illustrate the main problem with rounding off as a method
for solving Integer Programming problems

Integer programming – solving IPs

Solution if

rounding off is
used

True optimal

integer solution

Integer programming – solving IPs

• Conclusion: rounding off does not guarantee obtaining the optimal
solution

• Instead of rounding off, we introduce the Branch and Bound
method

• The Branch and Bound method breaks the feasible solution region
into sub-problems until an optimal solution is found

• There are Six Steps in Solving Integer Programming Maximisation
Problems by Branch and Bound

Integer programming – solving IPs – B&B

Branch and bound steps for a maximisation problem
1. Solve the original problem using LP:

• If the answer satisfies the integer constraints, it is the optimal solution

• If not, this value provides an initial upper bound

2. Find any feasible integer solution that meets the integer constraints for use as a lower bound

• Usually, rounding down each variable will accomplish this

3. Branch on one variable from Step 1 that does not have an integer value.

• Split the problem into two sub-problems based on integer values that are immediately above and
below the non-integer value.

• For example, if X1 = 3.75 was in the final LP solution, introduce the constraint X1 ≥ 4 in the first
sub-problem and X1 ≤ 3 in the second sub-problem

Integer programming – solving IPs – B&B

4. Create nodes at the top of these new branches by solving the new problems.

5. Branch termination

• If a branch yields a solution to the LP problem that is not feasible, terminate the branch.

• If a branch yields a solution to the LP problem that is feasible, but not an integer solution, go to
step 6.

• If the branch yields a feasible integer solution, examine the value of the objective function. If this
value equals the upper bound, an optimal solution has been reached.

• If it is not equal to the upper bound, but exceeds the lower bound, set it as the new lower
bound and go to step 6.

• Finally, if it is less than the lower bound, terminate this branch.

Integer programming – solving IPs – B&B

6. Examine both branches again and set the upper bound equal to the maximum value
of the objective function at all final nodes.

• If the upper bound equals the lower bound, stop.

• If not, go back to step 3.

If we are solving a minimisation problem, simply reverse the roles

of upper and lower bound. Alternatively, convert the minimisation
problem into a maximisation problem.

Integer programming – solving IPs – B&B

UB

X1=3, x2=1

LB=27

Update LB

LB=33

Update LB

LB=34

Update LB

LB=35

Maximise 7X1 + 6X2

subject to:

2X1 + 3X2 ≤ 12 (wiring hours)

6X1 + 5X2 ≤ 30 (assembly hours)

X1, X2 ≥ 0 (nonnegative)

where:

X1 = number of chandeliers produced

X2 = number of ceiling fans produced

Integer programming – solving IPs – B&B

UB

X1=3, x2=1

LB=27

Update LB

LB=33

Update LB

LB=34

Update LB

LB=35

6

4

5 64321

3

2

1

5

X1

X2

Integer programming – solving IPs – B&B

UB

X1=3, x2=1

LB=27

Update LB

LB=33

Update LB

LB=34

Update LB

LB=35

6

4

5 6

(3.75, 1.5)

Z=35.25

4321

3

2

1

5

X1

X2

(3, 2)

Z=33

(4.166, 1)

Z=35.16

(4, 1)

Z=33

Integer programming – solving IPs – B&B

UB

X1=3, x2=1

LB=27

Update LB

LB=33

Update LB

LB=34

Update LB

LB=35

6

4

5 6

(3.75, 1.5)

Z=35.25

4321

3

2

1

5

X1

X2

(3, 2)

Z=33

(4.166, 1)

Z=35.16

(4, 1)

Z=33

Combinatorial optimisation and
metaheuristics

• Combinatorial optimisation is a topic that consists of studying

optimisation problems with a finite set of solutions

• Many important problem in OR are combinatorial optimisation

problems:

• Scheduling problems

• Transportation problems

• Path planning

• Etc.

Combinatorial optimisation

In computational complexity, there are many problem complexity classes:
• P : the set of problems solvable in polynomial time
• EXP : the set of problems solvable in exponential time
• NP : the set of problems with solutions verifiable in polynomial time
• NP-hard : the set of problems that are "at least as hard as the hardest

problem in NP".
• NP-complete = NP ∩ NP-hard
• …

Problem complexity classes – how "difficult" is your problem?

P

EXP

NP

Difficult problems

NP-hardNP-complete

EXP-hard
Easy problems

• NP-complete problems are not solvable in polynomial time, unless

P=NP.

• "P=NP?" is to this day an open question in mathematics and CS

• Most researchers "believe" that P≠NP

• Many logistics and managerial problems are either in P or NP-

complete.

• Integer programming is NP-complete, while Pure Linear programming

is in P.

• This is the fundamental reason why solving ILP problems is more

challenging than solving pure LP problems.

Problem complexity classes

Complexity chart – how "fast" is your algorithm?

We are given:

• A set of n items numbered from 1 to n, where each item i has a

weight wi and a value vi.

• A knapsack with a maximum weight capacity W.

The goal is to select some items in order to maximise the total value,

while satisfying the maximum capacity constraint:

Maximise

Subject to:

The knapsack problem

1: packed

0: not packed

• The knapsack problem in a classic NP-complete problem

• It is one of the most intuitive problems

• Many exact approaches can be used to solve the problem (find an

optimal solution):

• Dynamic programming

• Branch and bound

• …

• However, since the problem is NP-complete, the running time of these

approaches increases exponentially w.r.t. the size of the problem!

The knapsack problem

• Instead of using exact approaches, we will look at alternative approaches
able to find feasible and "satisfactory" solutions, with no guarantee of
optimality.

• These approaches can be categorised as follows:
• Greedy/constructive algorithms

• Construct a solution from scratch while ensuring feasibility
• Local search algorithms

• Start from an arbitrary solution, then try to improve it iteratively by
generating "neighbouring" solutions using small changes (called
moves)

• Metaheuristics
• High-level heuristics approaches that make few or no assumptions

about the problem
• Try to improve a given solution iteratively by sampling new solutions

Alternative solution approaches

• A greedy algorithm is any algorithm that tries to optimise a given

problem by making locally optimal choices

• Greedy algorithms are fast, but do not guarantee optimality nor good

quality solutions

• Example for the knapsack problem:

1. Sort the items from the most valuable to the less valuable ones

2. Select the items to put in the knapsack in that order

3. Skip the items that exceed the total capacity

4. Stop when we don't have any more items to

evaluate, or maximum capacity is reached

Greedy/constructive algorithms

Hill climbing/neighbourhood search

• Hill climbing is a technique belonging to the family of local search

algorithm.

• It is an iterative algorithm that starts with an arbitrary solution, then

attempts to find a better solution by making an incremental change to

the solution.

• If the change produces a better solution, another incremental change

is made to the new solution, and so on.

• The algorithm stops when no further improvements can be found.

Hill climbing/neighbourhood search

• The neighbourhood N(X) is generated by
applying a small change on the current
solution

• Example for KP:
• We can use the bit-flip operator:

If the DV is 0, flip to 1
Flip to 1 otherwise

• One issue with this approach:
improvement will occur only when
flipping 0 to 1

• Alternative operators: swap operator
(swap two DVs, i.e., pack one and
unpack the other)

• Given a solution X, A neighbouring
solution X' is usually faster to evaluate :
f(X') = f(X) ± Δ

Hill climbing/neighbourhood search

10110

00110 12

11110 17

10010 11

10100 9

10111 13

X

N(X)

f(X)=15

X* : neighbours of X

f(X*)

Improvement found

update X

Generate the

neighbourhood of X

Evaluate all

neighbours (X*)

Stochastic hill climbing

• In stochastic hill climbing, instead of

generating the entire neighbourhood,

we generate only one neighbouring

solution at random.

• If the neighbour is better than the

current solution, we update the current

best solution. Otherwise, we repeat

the process.

• This process is repeated for a

specified maximum number of

iterations.

Heuristic design rules – the transition to metaheuristics

• To design an efficient heuristic, it is important to ensure a tradeoff

between exploitation and exploration:

• Exploitation consists of focusing the search in a particular area.

This is what classical local search algorithms do.

• Exploration consists of diversifying the search and exploring

multiple areas to improve the solution further. For instance, ILS

does this with perturbations.

• An algorithm that focuses more on exploitation will converge towards

local search; and an algorithm that focuses more on exploration will

converge towards random search.

• Incorporate problem knowledge whenever possible.

Extending local search

There are many metaheuristics that attempt to extend local search by

incorporating exploration mechanisms:

• Tabu search accepts worst solutions using a tabu list to record

already visited solutions

• Variables neighbourhood search uses multiple neighbourhood

operators to escape from local optima

• Iterated local search tries to escape from local optima by applying

stronger moves (perturbations)

• Simulated annealing accepts worst solutions using a probability

based on Boltzmann criterion

• …

Extending local search - Iterated Local Search

• The issue with most local search

algorithms is that they get stuck in

local optima

• Iterated local search tries to solve this

problem by applying "perturbations" to

the current solution in order to escape

from the local optima

• The perturbation must be strong

enough to explore another local

optimum area, but not too strong

(random restart)

Extending local search - Simulated annealing

Source: https://upload.wikimedia.org/w

ikipedia/commons/d/d5/Hill_Climbing_
with_Simulated_Annealing.gif

• Simulated annealing is a stochastic
optimisation algorithm attempting to
"balance" between exploitation and
exploration by accepting non-improving
solution with a decreasing probability
(slow cooling)

• It is an extension/adaptation of the
Metropolis-Hastings algorithm for
sampling

• Parameters to tune:
• Initial temperature: Tinit

• Cooling rate: α
• Number of inner iterations: IterStage

https://upload.wikimedia.org/wikipedia/commons/d/d5/Hill_Climbing_with_Simulated_Annealing.gif

Beyond local search

There are many metaheuristics that are
not extensions of local search algorithms
• Genetic algorithms adopt the idea of

neo-Darwinian evolution to iteratively
"evolve" a population of solutions using
genetic operators:
• Crossover: generating a solution by

combining two "parent" solutions
• Mutation: applying small changes

based on a small probability
• (Artificial) Selection: tournament

selection, random selection, roulette
wheel selection, etc.

Beyond local search

• Particle swarm optimisation uses principles

from collective behaviours of decentralised

systems to iteratively improve a population of

solutions.

• Estimation of Distribution Algorithms

are methods that guide the search for the

optimum by building and sampling explicit

probabilistic models of promising candidate

solutions.

The bigger picture...

Source: https://en.wikipedia.org/wiki/

Metaheuristic#/media/File:Metaheuris

tics_classification.svg

https://en.wikipedia.org/wiki/Metaheuristic

Quick exercise – The travelling salesman problem

Let us now consider the Travelling

Salesman Problem (TSP):

• Given a set of N cities, a salesman

must visit each city exactly once

before going back to the starting city

• Let {dij} be the distance matrix

between cities i and j

• Goal: find a tour that minimises the

total travelling distance

Staring city

Assuming solutions are encoded as permutations (sequence in which
the cities will be visited):
- how to design a constructive/greedy algorithm for TSP?
- how to design an operator to generate a neighbourhood?

Before using a metaheuristic

• No guarantee of optimality - how important is optimality for your
problem?

• No free lunch - the choice of the best metaheuristic for your problem
is not an easy one

• Parameters - depending on which metaheuristic you opt for, there
might be multiple parameter to tune...
• You could use a metaheuristic to tune a metaheuristic, that tunes a

metaheuristic...
• Heuristic parameter tuning in itself is an active area of research -

check out:
• The irace package: Iterated racing for automatic algorithm configuration
• SMAC: Learning the empirical hardness of optimization problems: The case of combinatorial

auctions
• MATE: A Model-based Algorithm Tuning Engine

Additional resources

• Zbigniew Michalewicz and David B. Fogel. "How to solve it:

modern heuristics". Springer Science & Business Media, 2013.

• El-Ghazali Talbi. "Metaheuristics: from design to implementation". Vol.

74. John Wiley & Sons, 2009.

