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Linear programming

* Linear programming (LP) is
* a widely used mathematical technique for modelling and problem solving
* designed to help managers in planning and decision-making
e atechnique that can help in resource allocation, routing, scheduling, etc.

* Linear means the equations and functions used in modelling the problems are
linear

* Programming refers to modelling and solving a problem mathematically



Linear programming — properties

* All problems seek to maximise or minimise some quantity
* e.g. maximise profit, minimise cost, minimise risk, etc.
 This quantity is called the objective function

 The presence of restrictions limits the degree to which we can pursue
our objective

e These limits are called constraints
 Constraints are expressed as equations or inequalities
e There must be alternative courses of action to choose from

* The problem has more than one possible solution

 The objective and constraints in linear programming problems must be
expressed in terms of linear equations or inequalities



Linear programming — important assumptions

Certainty:

* Values in the objective function and constraints are known with certainty and do not change
during the period being studied

Proportionality:

e Existsin the objective and constraints

* Constancy between production increases and resource utilisation
Additivity:

* The total of all activities equals the sum of the individual activities
Divisibility:

 Solutions do not need to be whole numbers (integers)
 Solutions are divisible, and may take any fractional value
Non-negativity:

* All answers (decision variables) are > zero

* Negative values of physical quantities are impossible



Linear programming — formulation

* Formulating a linear program involves developing a mathematical
model to represent the problem.

* Once the problem is understood, begin to develop the
mathematical statement of the problem.
 Steps in formulating LP problems:
1. Completely understand the problem being faced
2. ldentify the objective and the constraints
3. Define the decision variables
4

Use the decision variables to write mathematical expressions for the objective
function and the constraints



Linear programming — a simple example

A typical example of a LP problem is the Product Mix problem:

 Two or more products are usually produced using limited resources such
as personnel, machines, raw materials, and so on.

 The profit that the firm seeks to maximise is based on the profit contribution
per unit of each product.

 The company would like to determine how many units of each product it
should produce so as to maximise overall profit given its limited resources.



Linear programming —a simple example

Product Mix problem Tables and Chairs

* The problem faced is what to produce?

* More concretely: how many tables and how many chairs to produce?

Profit per unit

Carpentry

Painting &
varniching

Hours required to
produce one unit

Resource limits



Linear programming — a simple example

* Identifying the objectives:

* |In this example, the objective is to maximise profit

* And the constraints:
* Hours of carpentry time used < 240 hrs. per week

* Hours of painting & varnishing used < 100 hrs. per week.



Linear programming — a simple example

Define the decision variables:
Let:
T be the number of tables produced each week

C be the number of chairs produced each week



Linear programming — a simple example

Maximise 7T + 5C
Subject to: 4T + 3C< 240 (Carpentry)
2T+ 1C< 100 (Painting & Varnishing)
T> 0 (1st nonnegative cons)

C>0 (2nd nonnegative cons)

Notice that:
* the units have been disregarded

e decision variables are kept on one side of the inequality



Linear programming — a simple example

.. Right Hand Side
Maximise 7T+5C  ____ __— " (g

' |
Subject to: 4T + 3C <; 240! (Carpentry)
|
2T +1C<!100 E(Painting & Varnishing)
T>10 (1st nonnegative cons)
|

C=>0 ,(2nd nonnegative cons)

Notice that:
* the units have been disregarded

e decision variables are kept on one side of the inequality



Linear programming — graphical method

* When only two decision variables exist, the simplest method for
solving the problem might be the graphical solution approach.

* The graphical method works only when there are two decision
variables, but it provides valuable insight into how larger problems

are structured.

* Most real-world problems involve multiple decision variables and
sometimes multiple objectives as well.



Linear programming — graphical method

Corner Point Solution Method
* Approach to solve LP problems with two decision variables

* It involves looking at the profit at every corner point of the feasible
region

* The mathematical theory behind LP is that the optimal solution must
lie at one of the corner points in the feasible region



Linear programming — graphical method

Steps in using the corner point method for solving LP problems
1. Graph all constraints and find the feasible region

N

Find the corner points of the feasible region
3. Compute the profit (or cost) at each of the feasible corner points

Select the corner point with the best value of the objective
function found in step 3. This is the optimal solution

>



Linear programming — graphical method
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Linear programming — graphical method
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Linear programming — graphical method

* The feasible region for the problem is a four-sided polygon with four corner, or
extreme, points.

* These points are labeled 1, 2, 3 and 4 on the next graph.

 To find the (T, C) values producing the maximum profit, find the coordinates of
each corner point and test their profit levels.

Point 1: (T = 0,C = 0) profit = S7(0) + $5(0) = SO

Point 2: (T = 0,C = 80) profit = $7(0) + $5(80) = S400
Point 3: (T = 30,C = 40) profit = $7(30) + $S5(40) = $410
Point 4: (T = 50, C = 0) profit = $7(50) + $5(0) = $350



Linear programming — graphical method
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Linear programming — Special cases

* Several special cases might occur when applying the graphical
solution to a particular LP:

1. Infeasibility

2. Unbounded Solutions

3. Multiple Optimal Solutions
4. Redundancy in constraints
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Integer programming

* Integer programming is the extension of LP that solves problems
requiring integer solutions

* Many situations exists where decimal values of a particular
decision variable do not give a feasible solution

* E.g., consider the optimal ordering policy problem: ordering 2.42
computers is not feasible

* The number of computer should be a whole number (integer)



Integer programming — variants

There are three types of integer programs:

* (Pure) Integer Programming: all variables are required to have
integer values

* Mixed-Integer Programming (MIP): some, but not all, of
the decision variables are required to have integer values

* 0-1 Integer Programming: a special case in which all the
decision variables must have integer solution values of 0 or 1



Integer programming — solving |Ps

* Rounding off is one way to reach integer solution values, but it often
does not yield the best solution

* An important concept to understand is that an integer programming
solution can never be better than the solution to the same
LP problem

* The integer problem is usually worse in terms of higher cost or lower profit



Integer programming — solving |Ps

» Consider the following mixed product problem:
Maximise 7X1 + 6X2
subject to:
2X1+3X2=<12 (wiring hours)
6X1 + 5X2 <30 (assembly hours)
X1,X2=20 (nonnegative)
where:
X1 = number of chandeliers produced
X2 = number of ceiling fans produced
« Since we only have two decision variables, we can use the graphical approach to
solve the LP

 This will also amply illustrate the main problem with rounding off as a method
for solving Integer Programming problems



Integer programming — solving |Ps
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Integer programming — solving |Ps

Conclusion: rounding off does not guarantee obtaining the optimal
solution

Instead of rounding off, we introduce the Branch and Bound
method

The Branch and Bound method breaks the feasible solution region
into sub-problems until an optimal solution is found

There are Six Steps in Solving Integer Programming Maximisation
Problems by Branch and Bound



Integer programming — solving |IPs — B&B

Branch and bound steps for a maximisation problem

1. Solve the original problem using LP:
* |If the answer satisfies the integer constraints, it is the optimal solution
* If not, this value provides an initial upper bound

2. Find any feasible integer solution that meets the integer constraints for use as a lower bound
e Usually, rounding down each variable will accomplish this

3. Branch on one variable from Step 1 that does not have an integer value.
 Split the problem into two sub-problems based on integer values that are immediately above and
below the non-integer value.
* For example, if X; = 3.75 was in the final LP solution, introduce the constraint X; > 4 in the first
sub-problem and X; £ 3 in the second sub-problem



Integer programming — solving |IPs — B&B

4.
5.

Create nodes at the top of these new branches by solving the new problem:s.

Branch termination
If a branch yields a solution to the LP problem that is not feasible, terminate the branch.

If a branch yields a solution to the LP problem that is feasible, but not an integer solution, go to
step 6.

If the branch yields a feasible integer solution, examine the value of the objective function. If this
value equals the upper bound, an optimal solution has been reached.

If it is not equal to the upper bound, but exceeds the lower bound, set it as the new lower
bound and go to step 6.

Finally, if it is less than the lower bound, terminate this branch.



Integer programming — solving |IPs — B&B

6. Examine both branches again and set the upper bound equal to the maximum value
of the objective function at all final nodes.

 Ifthe upper bound equals the lower bound, stop.
* If not, go back to step 3.

If we are solving a minimisation problem, simply reverse the roles
of upper and lower bound. Alternatively, convert the minimisation
problem into a maximisation problem.




Integer programming — solving |IPs — B&B
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Integer programming — solving |IPs — B&B
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Integer programming — solving |IPs — B&B
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Integer programming — solving |IPs — B&B
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Combinatorial optimisation

« Combinatorial optimisation Is a topic that consists of studying
optimisation problems with a finite set of solutions

« Many important problem in OR are combinatorial optimisation
problems:
« Scheduling problems
« Transportation problems
« Path planning
* Eftc.



Problem complexity classes — how "difficult" is your problem?

In computational complexity, there are many problem complexity classes:

P : the set of problems solvable in polynomial time

EXP : the set of problems solvable in exponential time

NP : the set of problems with solutions verifiable in polynomial time
NP-hard : the set of problems that are "at least as hard as the hardest

problem in NP".

NP-complete = NP N NP-hard

NP-complete yNP-hard

N

! (EXP-hard
Easy problems | ,I |

J Difficult problems

\

1

P
J

\

NP

I
EXP



Problem complexity classes

 NP-complete problems are not solvable in polynomial time, unless
P=NP.
« "P=NP?"Is to this day an open question in mathematics and CS
* Most researchers "believe" that PANP

« Many logistics and managerial problems are either in P or NP-

complete.
* Integer programming is NP-complete, while Pure Linear programming
IS In P.
* This is the fundamental reason why solving ILP problems is more
challenging than solving pure LP problems.



Complexity chart — how "fast" is your algorithm?

Operations

Elements



The knapsack problem

We are given:

« Aset of nitems numbered from 1 to n, where each item i has a
weight w, and a value v;.

« Aknapsack with a maximum weight capacity W.

The goal Is to select some items In order to maximise the total value,

while satisfying the maximum capacity constraint:

" < 7/
i ey - <=
Maximise ;U'Lmz 15 kg
o B3 -
Subject to: Z’wiwi <W B ,
1=1
T; C {0,1} 1: packed m

0: not packed



The knapsack problem

* The knapsack problem in a classic NP-complete problem

* |t is one of the most intuitive problems

 Many exact approaches can be used to solve the problem (find an
optimal solution):
« Dynamic programming
 Branch and bound

 However, since the problem is NP-complete, the running time of these
approaches increases exponentially w.r.t. the size of the problem!



Alternative solution approaches

* Instead of using exact approaches, we will look at alternative approaches
able to find feasible and "satisfactory" solutions, with no guarantee of
optimality.

 These approaches can be categorised as follows:

« Greedy/constructive algorithms
« Construct a solution from scratch while ensuring feasibility
 Local search algorithms
« Start from an arbitrary solution, then try to improve it iteratively by
generating "neighbouring” solutions using small changes (called
moves)
 Metaheuristics
« High-level heuristics approaches that make few or no assumptions

about the problem
- Trytoimprove a given solution iteratively by sampling new solutions



Greedy/constructive algorithms

« Agreedy algorithm Is any algorithm that tries to optimise a given
problem by making locally optimal choices

« Greedy algorithms are fast, but do not guarantee optimality nor good
guality solutions

 Example for the knapsack problem:
1. Sort the items from the most valuable to the less valuable ones

2. Select the items to put in the knapsack in that order
3. Skip the items that exceed the total capacity ?
4. Stop when we dqn't have any more items to o
evaluate, or maximum capacity is reached >
]

R



Hill climbing/neighbourhood search

« Hill climbing Is a technigue belonging to the family of local search
algorithm.

« Itis an iterative algorithm that starts with an arbitrary solution, then
attempts to find a better solution by making an incremental change to

the solution.
« If the change produces a better solution, another incremental change

IS made to the new solution, and so on.
« The algorithm stops when no further improvements can be found.



Hill climbing/neighbourhood search

The neighbourhood N(X) is generated by
applying a small change on the current
solution
Example for KP:
« We can use the bit-flip operator:
If the DV iIs O, flip to 1
Flip to 1 otherwise
« One issue with this approach:
iImprovement will occur only when
flipping Oto 1
« Alternative operators. swap operator
(swap two DVs, I.e., pack one and
unpack the other)
Given a solution X, A neighbouring
solution X' is usually faster to evaluate
f(X")=f(X) £ A

1: X < initial solution

2: repeat
3:  for X* e N(X) do

4 if f(X*) > f(X) then
5: X +— X~

6: end if

7 end for

8: until there is no improvement

__— global maximum




Hill climbing/neighbourhood search

X" : neighbours of X

Generate the /{  Evaluate all

reshboutootolX ) Temous ) 1: X < initial solution
100110 | '12 2: repeat
I i I I *
| | .
0"y {17 e e % for X* € N(X) do
! -~ 4: if f(X*) > f(X) then
10110 -1 10010 | '11 : 5: X +— X*
X : A 6: end if
f(X)=15 10100 1 19 7.  end for
| | | | . . . .
' 10111 | 113 | 8: until there is no improvement
R Y T
N F(X)




Stochastic hill climbing

In stochastic hill climbing, instead of
generating the entire neighbourhood,
we generate only one neighbouring
solution at random.

If the neighbour is better than the
current solution, we update the current
best solution. Otherwise, we repeat
the process.

This process is repeated for a
specified maximum number of
iterations.

. X < initial solution
1< 0
. for 1 < max_iterations do
X* < random_neighbour(X)
if f(X*) > f(X) then
X + X~
end if
11+ 1

end for




Heuristic design rules — the transition to metaheuristics

* To design an efficient heuristic, it is important to ensure a tradeoff
between exploitation and exploration:

« EXxploitation consists of focusing the search In a particular area.
This is what classical local search algorithms do.

« EXxploration consists of diversifying the search and exploring
multiple areas to improve the solution further. For instance, ILS
does this with perturbations.

* An algorithm that focuses more on exploitation will converge towards

local search; and an algorithm that focuses more on exploration will
converge towards random search.

* Incorporate problem knowledge whenever possible.




Extending local search

There are many metaheuristics that attempt to extend local search by

Incorporating exploration mechanisms:

 Tabu search accepts worst solutions using a tabu list to record
already visited solutions

 Variables neighbourhood search uses multiple neighbourhood
operators to escape from local optima

* lterated local search tries to escape from local optima by applying
stronger moves (perturbations)

 Simulated annealing accepts worst solutions using a probability
based on Boltzmann criterion



Extending local search - Iterated Local Search

The issue with most local search
algorithms Is that they get stuck In
ocal optima

terated local search tries to solve this
oroblem by applying "perturbations” to
the current solution in order to escape
from the local optima

The perturbation must be strong
enough to explore another local
optimum area, but not too strong
(random restart)

procedure [terated Local Search
sg = GeneratelnitialSolution
s* = LocalSearch(sp) % optional
repeat
s' = Perturbation(s™)
s = LocalSearch(s")
s* = AcceptanceCriterion(s*, s™')
until termination condition met
end

fX)




Extending local search - Simulated annealing

procedure Simulated Annealing(inital solution s)

. Simu!ate_d annea_ling IS a stoc_:hastic ’;g B e el 0,1, linose TierShuge
optimisation algorithm attempting to repeat - |
"balance” between exploitation and O e o il
exploration by accepting non-improving A f(s) - f(5)
solution with a decreasing probability o { if A <0 or Update Best
(SlOW COO“ng) . with the probability exp _I—A

* It is an extension/adaptation of the TeaxT
Metropolls_ HaStIngS algorlthm for en(:mtil stopping conditions are met

sampling
 Parameters to tune:
* Initial temperature: T,
 Cooling rate: a
 Number of inner iterations: IterStage

Source: https://upload.wikimedia.org/w
ikipedia/commons/d/d5/Hill Climbing
with Simulated Annealing.qif



https://upload.wikimedia.org/wikipedia/commons/d/d5/Hill_Climbing_with_Simulated_Annealing.gif

Beyond local search

There are many metaheuristics that are
not extensions of local search algorithms
* Genetic algorithms adopt the idea of
neo-Darwinian evolution to iteratively
"evolve" a population of solutions using
genetic operators:
* Crossover: generating a solution by
combining two "parent” solutions
« Mutation: applying small changes
based on a small probability
* (Artificial) Selection: tournament
selection, random selection, roulette
wheel selection, etc.

00110110100 1001000[1011
crossover ><
00110111011 10010000100

mutation ¢ *
00110111010 10010100100




Beyond local search

Particle swarm optimisation uses principles
from collective behaviours of decentralised
systems to iteratively improve a population of
solutions.

Estimation of Distribution Algorithms
are methods that guide the search for the
optimum by building and sampling explicit
probabilistic models of promising candidate
solutions.
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The bigger picture...

Metaheuristics
Population
- Evolutionary
< algorithm
Q —
g [Genetic algorithmj 3
n— Particle swarm O
> Genetic optimization ﬁ
© programming p =
"5 Evolution | [Ant colony optimization
-l‘-é Evolutionary strategy algorithms
=> programming S m
p b
Differential Estimation of distribution 'E— g
evolution algorithm 0
g + 3
1]
[Scatter search] 3
o o
Simulated =3 '2
annealing g
r+

Tabu search

Qterated local searc h)

(Stochastic local search )

yoJeas [e207

Trajectory [Variable neighborhood search J (Guided local search)

Source: https://en.wikipedia.orag/wiki/
_ _ _ _ Metaheuristic#/media/File:Metaheuris
Dynamic objective function tics classification.svg



https://en.wikipedia.org/wiki/Metaheuristic

Quick exercise — The travelling salesman problem
Let us now consider the Travelling S oy
Salesman Problem (TSP):
* Given a set of N cities, a salesman
must visit each city exactly once
nefore going back to the starting city
* Let {d;} be the distance matrix
petween cities | and |
« Goal: find a tour that minimises the
total travelling distance

Assuming solutions are encoded as permutations (sequence in which
the cities will be visited):

- how to design a constructive/greedy algorithm for TSP?
- how to design an operator to generate a neighbourhood?



Before using a metaheuristic

 No guarantee of optimality - how important is optimality for your
problem?
* No free lunch - the choice of the best metaheuristic for your problem
IS ot an easy one
 Parameters - depending on which metaheuristic you opt for, there
might be multiple parameter to tune...
* You could use a metaheuristic to tune a metaheuristic, that tunes a
metaheuristic...
* Heuristic parameter tuning in itself is an active area of research -
check out:

The irace package: Iterated racing for automatic algorithm configuration
SMAC: Learning the empirical hardness of optimization problems: The case of combinatorial
auctions

MATE: A Model-based Algorithm Tuning Engine



Additional resources

« Zbigniew Michalewicz and David B. Fogel. "How to solve lit:
modern heuristics". Springer Science & Business Media, 2013.

« EIl-Ghazali Talbi. "Metaheuristics: from design to implementation”. Vol.
74. John Wiley & Sons, 2009.



