Design and analysis of experiments Lecture 6

Jakob G. Rasmussen
Department of Mathematics
Aalborg University
Denmark

Greaco-latin design

- ► The latin design showed us one way of designing an experiment with one main factor and two nuisance factors in greaco-latin designs we insert one more nuisance factor.
- The levels of this factor is combined with the other factors, such that each level is combined with each level of the other factors exactly once.
- Example:

$A\alpha$	Вβ	$C\gamma$	Dδ
$B\gamma$	$A\delta$	$D\alpha$	Сβ
Сδ	$D\gamma$	$A\beta$	$B\alpha$
$D\beta$	$C\alpha$	Вδ	$A\gamma$

- Such designs can be made for the number of levels in all four factors p > 2 and $p \ne 6$.
- We need to make p^2 number of experiments, rather than p^4 for making all combinations once.

R

- ▶ R demo, part 1
- ▶ Exercise 1

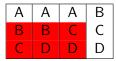
Balanced incomplete block design

- Consider a problem with one main factor and one blocking factor - what do we do if there's no time/resources to do all combinations of levels in the two factors?
- ▶ BIBD: an incomplete block design, where any pair of treatments appear together an equal number of times.
- Numbers:
 - ightharpoonup a = number of treatments
 - ightharpoonup r = number of replicates
 - ▶ b = number of blocks
 - k = size of block
 - $ightharpoonup \lambda = \text{number occurrences of a pair in the same block}$
- A simple example $(a = 4, r = 3, b = 4, k = 3, \lambda = 2)$:

Α	Α	Α	В
В	В	C	C
С	D	D	D

Requirements

- ▶ All the numbers a, r, b, k, λ must be integers.
- ▶ The number of observations is N = ar = bk. Often a, b and k are given, hence $r = \frac{bk}{a}$ must be an integer.
- By considering the blocks in which a specific treatment occur, the remaining treatments in these blocks can be counted in two ways, giving $r(k-1)=\lambda(a-1)$. For example, A is repeated r=3 times with k-1=2 other treatments, but it also appears $\lambda=2$ times with a-1=3 other treatments.



Hence $\lambda = r \frac{k-1}{a-1}$ must be an integer.

These two conditions are necessary, but not sufficient. The simplest example with no BIBD is a=15, b=21, k=5, r=7, $\lambda=2$.

A Classic Design

- For a=7 treatments, b=7 blocks of size k=3, the conditions are fulfilled with $r=\frac{bk}{a}=3$, $\lambda=r\frac{k-1}{a-1}=1$.
- Let the treatments be A, B, C, D, E, F, G.
- ► Steps:
 - 1. We order the 3 blocks with A first and assume that B-C, D-E and F-G are together in these blocks:
 - 2. B and C must occur twice more and not together.
 - 3. D-F must occur together. We can assume this happens in a B block. The E-G must be together in the other B block. Then there is only one choice for the two C blocks.

Α	Α	Α	В	В	С	С
В	D	F	D	Е	D	Ε
С	E	G	F	G	G	F

R

- ▶ R demo, part 2
- Exercise

Types of data

- Qualitative, categorical (nominal):
 - Categories of data
 - Fx eye colors (blue, green, grey, brown)
- Qualitative, ordinal
 - Ordered data
 - ► Fx cloth sizes (S, M, L, XL)
- Quantitative, continuous (interval)
 - ▶ Data measured in real numbers
 - Fx heights

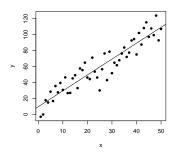
Explanatory	Response variable		
variables	categorical	continuous	
categorical	contingency table	analysis of variance	
continuous	e.g. logistic regression	regression analysis	
both	?	analysis of covariance	

Simple regression

- ▶ We start with simple regression, where we model a continuous response variable y as a function of a continuous explanatory variable x.
- ▶ Data: we have observed $((x_1, y_1)), \dots, (x_n, y_n)$.
- ► Model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- Assumptions:
 - ▶ Normal distribution: $\epsilon_i \sim N(0, \sigma^2)$
 - ▶ Independence: ϵ_i are independent from each other



Simple regression - matrix notation

▶ Matrix notation: we can write this as $y = X\beta + \epsilon$, where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

- ➤ X is called the design matrix formulating other design matrices will give us other models.
- ► The matrix notation makes life easier, since we can cope with all regression models at the same time.

Multiple regression

► Model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \epsilon_i$$

Design matrix and parameter vector:

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{k1} \\ & & \vdots & \\ 1 & x_{1n} & \cdots & x_{kn} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$$

Polynomial regression

► Model:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + \epsilon_i$$

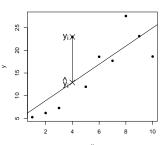
▶ Design matrix and parameter vector:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ & & \vdots & \\ 1 & x_n & x_n^2 & \cdots & x_n^k \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$$

Fitting a straight line (or other function)

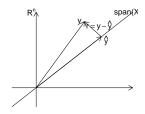
- ▶ "True" model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ (or generally: $y = X\beta + \epsilon$)
- ▶ Fitted model: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ (or generally: $\hat{y} = X\hat{\beta}$)
- Ordinary least squares (OLS):
 - We want to find values $\hat{\beta}_0$ and $\hat{\beta}_1$ (or generally: $\hat{\beta}$) such that the fit is as close to the data as possible
 - ▶ I.e. we minimize the sum of squares of the residuals $r_i = y_i \hat{y}_i$ (i.e. the length of the residual vector $r = y \hat{y}$):

$$SS_E = \sum r_i^2 = \sum (y_i - \hat{y}_i)^2 = |r|^2 = |y - \hat{y}|^2$$



Estimation

- ▶ We need to find $\hat{\beta}$, the estimate of β , by minimising the length of the residual vector $r = y \hat{y}$.
- ► Two methods:
 - Differentiation used in the book
 - Geometry used here
- ► Consider y and \hat{y} vectors in n-dimensional space \mathbb{R}^n $r = y \hat{y}$ is smallest when $r \perp \operatorname{cols}(X)$



Estimating β

Since r is orthogonal to any x_j (the jth column of X) it is also orthogonal to any linear combination, i.e. $r \cdot (Xv) = 0$ for any vector $v \in \mathbb{R}^{k+1}$:

$$0 = (Xv)^{\top}(y - X\hat{\beta}) = v^{\top}(X^{\top}y - X^{\top}X\hat{\beta}) \Rightarrow X^{\top}y - X^{\top}X\hat{\beta} = 0 \Rightarrow \hat{\beta} = (X^{\top}X)^{-1}X^{\top}y \Rightarrow \hat{y} = X\hat{\beta} = X(X^{\top}X)^{-1}X^{\top}y = Hy$$

- H is called a projection matrix or hat-matrix.
- Parameter estimates:

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$$

► Fitted values:

$$\hat{y} = X(X^{\top}X)^{-1}X^{\top}y = Hy$$

R

- ▶ R demo, part 3
- ► Exercise 3