

Exercise 1: The effect of time horizon (1 of 2)

- Case: biodiesel
 - Functional unit = 1 t biodiesel (~35 GJ) incl. combustion in engine
 - Land use: 1 ha yr needed to produce the biofuel
 - Process emissions (non-LUC emissions):
 - Biodiesel: 2.5 t CO₂/t biodiesel
 - Fossil alternative: 3 t CO₂/t
 - Carbon stock for land
 - C-stock before = 145 t/ha
 - C-stock cropland = 70 t/ha

Exercise 1: The effect of time horizon (2 of 2)

- Question 1: emissions from change in C-stock
 - Calculate CO₂-emissions for functional unit from land use change induced by C-stock change
- Question 2: Amortisation
 - Calculate LUC-emissions using amortisation, use 20 and 100 years as amortisation period
- Question 3: Carbon debt
 - Calculate carbon debt (years)
- Question 4: Accelerated deforestation
 - Calculate LUC emissions (GWP) using the accelerated deforestation method for time horizons at 20, 100 and 500 years
 - N.B. Use excel sheet with GWP calculation

Exercise 2: Intensification

- Imagine you want to include intensification in your iLUC calculations
- From FAOSTAT you have downloaded:
- Calculate proportion between intensification (Δ yield) and expansion (Δ area) world production of wheat $\frac{\Delta}{\Delta}$ Area Harvested (Ha) 2000 215,436,907

worla p	roduction of wheat			
Year	Area Harvested (Ha)	Production (tonnes)		
2000	215,436,907	585,690,370		
2001	214,611,026	589,832,114		
2002	213,816,159	574,745,910		
2003	207,698,892	560,127,922		
2004	216,926,157	632,703,310		
2005	219,742,875	626,866,195		
2006	211,195,424	602,892,293		
2007	216,706,677	612,601,092		
2008	222,275,263	683,153,270		
2009	224,389,208	686,794,645		
2010	217,312,408	653,355,358		
2011	220,385,285	704,080,283		

Exercise 3: Intensification

- Assume that 1 t biodiesel can be produced via intensification with emissions at 2 t CO₂
- How can modelled intensification be fitted into the LUC model for
 - Amortisation
 - Carbon debt
 - Accelerated deforestation

Exercise 4: Intensification

- What is the fertiliser (kg N) required to produce additional 1 kg dm pasture grass when fertiliser level is
 - 0 kg N/ha yr
 - 50 kg N/ha yr
 - 100 kg N/ha yr
- Use the following data

Sun X, Luo N, Longhurst B and Luoet J (2008), Fertiliser Nitrogen and Factors											
Affecting Pasture Responses. The Open Agriculture Journal, 2008, 2, 35-42											
N	0	150	175	300	350	450	525	600	700		
Yield(dm)	7.7	10.0	9.5	10.4	10.2	11.2	11.3	10.7	10.8		

Exercise 5: Evaluate and draft response paper on Finkbeiner (2013)

- Finkberiner (2013), iLUC within LCA scientific robustness and consistency with standards
- http://www.fediol.eu/data/RZ VDB 0030 Vorstudie ENG Komplett.pdf

Answers Exercise 1: The effect of time horizon

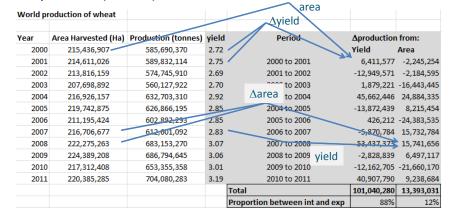
1. CO2 from carbon stock change

- CO₂ = (145-70)*(44/12) = 275 t CO₂

2. Amortisation

- 20 yr: 275/20 = 13.8 t CO₂ from LUC
- $-100 \text{ yr: } 275/100 = 2.75 \text{ t CO}_2 \text{ from LUC}$

3. Carbon debt

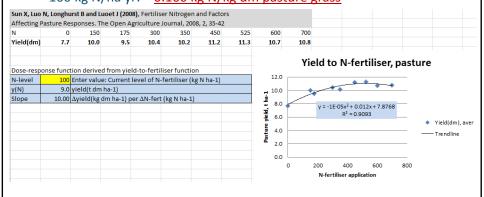

 $-275 \text{ t CO}_2/(3 \text{ t CO}_2/\text{t}-2.5 \text{ t CO}_2/\text{t}) = 550 \text{ years}$

4. Accelerated deforestation

- TH_{20} : $(1 0.958) \times 275 \text{ t CO}_2 = 11.4 \text{ t CO}_2 \text{ from LUC}$
- TH_{100} : (1 0.992) x 275 t $CO_2 = 2.1 t CO_2$ from LUC
- TH₅₀₀: (1 0.9985) x 275 t CO₂ = 0.41 t CO₂ from LUC

Answers Exercise 2: Intensification

 Calculate proportion between intensification (Δyield) and expansion (Δarea)


Answers Exercise 3: Intensification

- Amortisation
 - Overlap between process emissions and intensification emissions
 - Lack of distinction between 'direct LUC' (on field) and iLUC (upstream)
- Carbon debt
 - LUC in unit year, and intensification in unit CO₂
- Accelerated deforestation
 - Can be implemented
 - Note that intensification emissions should not be treated as accelerated emissions

Answers Exercise 4: Intensification

 What is the fertiliser (kg N) required to produce additional 1 kg dm pasture grass when fertiliser level is

0 kg N/ha yr:
0.083 kg N/kg dm pasture grass
50 kg N/ha yr:
0.091 kg N/kg dm pasture grass
100 kg N/ha yr:
0.100 kg N/kg dm pasture grass

