

The challenge of temporal issues and amortisation

- Land use:
 - Unit: ha yr
 - Most often proportional with the functional unit, e.g. yield
- Land use change
 - Unit: ha transformation from X to Y
 - Unit is not proportional with functional unit

How can the problem be solved?

1. Amortisation

- transformation "supports" a fixed number of functional units, OR
- define a number of years to be attributed to occupation

2. Carbon Debt

- Results not reported as impacts, but pay-back time (years)
- Applicable to biofuels that substitute fossil alternative
- Years before cumulative annual savings exceed transformation impact

3. Accelerated deforestation

- Assuming that total deforestation (long term) is not affected by current demand for products
- The effect of demanding products now is accelerated deforestation
- GHG-effect calculated via Bern Carbon Cycle and IPCC's GWP

Amortisation (1 of 2)

• Used in:

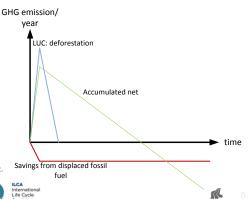
- PAS2050
- GHG-protocol
- The EU Commission's PEF (product environmental footprint) guide

• How:

- Occupation of 1 ha yr
- Choose amortisation period typically 20 years
- Decide to include or exclude LUC
- If LUC is included, identify C stock before and after LUC
- GHG-emissions from LUC = Δ C x (44/12) x (1/20)

Amortisation (2 of 2)

- Interpretation
 - Current demand for land causes:
 - deforestation up to 20 years ago, or
 - deforestation the next 20 years
 - Amortisation period is arbitrary
 - Choice to include or exclude LUC (based on historical data):
 - ignores trade with crops/animal products
 - inherently assumes that crop-displacement takes place
- Lack of causality and several arbitrary choices!



Carbon debt (1 of 2)

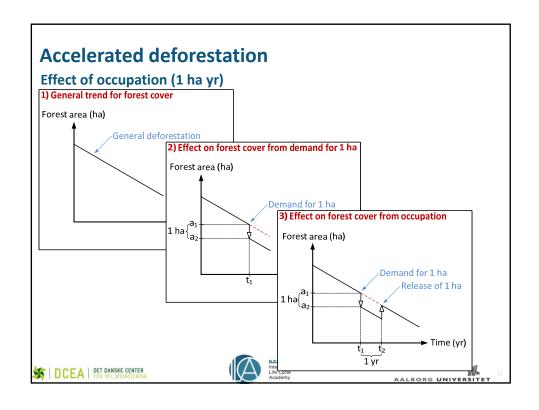
- Used in various biofuel studies
- Carbon debt = CO₂ release from converting natural habitat for biofuel production
- Over time biofuels can repay this carbon debt

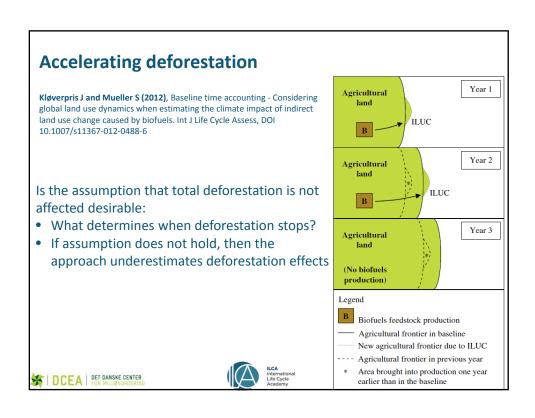
 Fagionne et al. (2008), Land Clearing and the Biofuel Carbon Debt. Science Vol 319, pp 1235-1238

DCEA DET DANSKE CENTER FOR MILJØVURDERIN

Carbon debt (2 of 2)

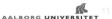
- Interpretation
 - Assumptions on baseline important: often untouched forest in very long period of time
 - Any interaction with surroundings (iLUC) ignored, i.e. very local market for land
 - Intensification ignored and difficult/not possible to include because in another unit/other methodology
- Limited usability!!
 - comparison parameter (GHG from alternative fuel) build-in as impact category
 - non-compliance with other impact categories


Accelerated deforestation


- Used in:
 - the 2.-0 LCA iLUC model
 - Kløverpris J and Mueller S (2012), Baseline time accounting Considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels
- Assumptions
 - Aim to establish relationship between demand for land and deforestation (effects)
 - Total deforestation not affected by demand for products
 - when 1 ha yr is needed this causes 1 ha accelerated deforestation by 1
 yr (or 1 ha delayed naturalisation by 1 yr)
 - IPCC's GWP is used to quantify GHG-effects

IPCC's global warming potential (GWP)

- The global warming potential
 - Originally used to differentiate different GHG-emissions (unit: CO₂-eq)

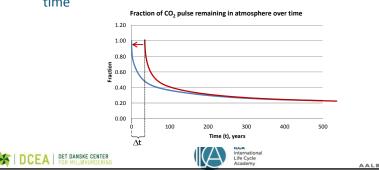

$$GWP_i = \frac{\int_0^{TH} RF_i(t)dt}{\int_0^{TH} RF_{CO_2}(t)dt}$$

- TH = time horizon
- RF = Radiative forcing (W/m²)

http://ww

IPCC's global warming potential (GWP)

- The global warming potential
 - Non-CO₂ GHG are removed via degradation (exp via life time)
 - CO₂ is removed via assimilation in the sea and in biomass. This can be expressed via Bern Carbon Cycle (IPCC 2007)


fraction (t) = 0.217+0.259*exp(-t/172.9)+0.338*exp(-t/18.51)+0.186*exp(-t/1.186).

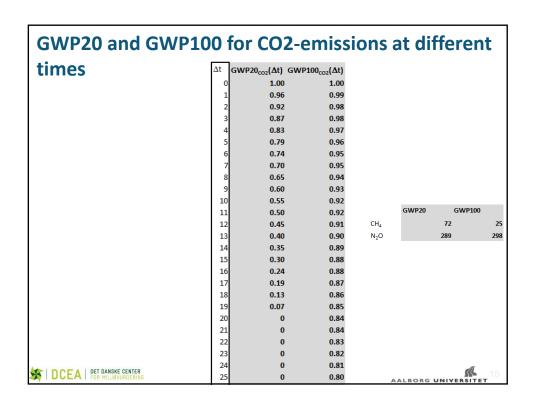
- The effect of CO₂ emitted at different times can be calculated
- No need for considering RF when CO₂ is compared by CO₂ at different time

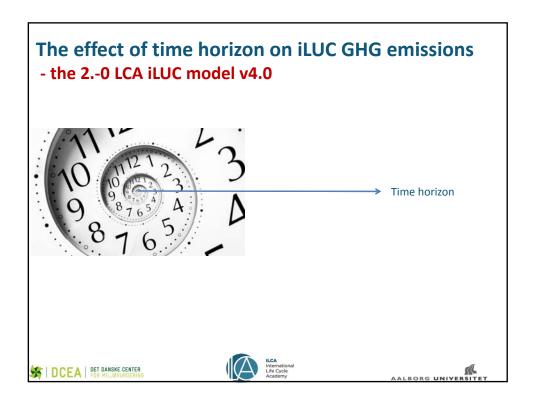
				Global Warming Potential for Given Time Horizon			
Industrial Designation or Common Name (years)	Chemical Formula	Lifetime (years)	RadiativeEfficiency (W m ⁻² ppb ⁻¹⁾	SAR± (100- yr)	20-уг	100-yr	500-уг
Carbon dioxide	CO ₂	See belowa	b1.4x10−5	1	1	1	1
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153
Substances controlled by the	e Montreal Protoco	ol					
CFC-11	CCI ₃ F	45	0.25	3,800	6,730	4,750	1,620
CFC-12	CCI ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400
.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html				4,800	6,540	6,130	2,700

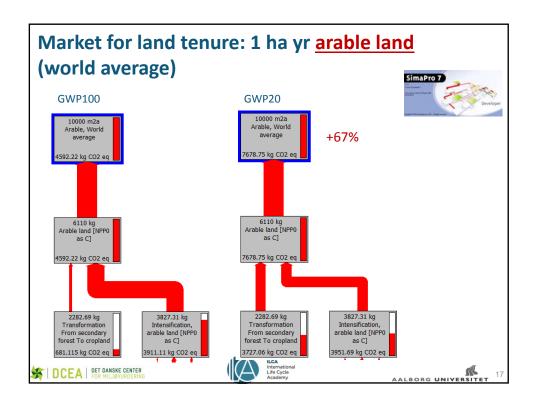
IPCC's global warming potential (GWP)

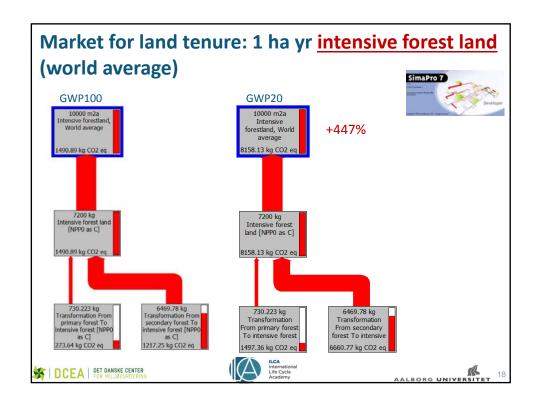
- The global warming potential
 - CO₂ is removed via assimilation in the sea and in biomass
 - This can be expressed via the Bern Carbon Cycle (IPCC 2007)
 fraction (t) = 0.217+0.259*exp(-t/172.9)+0.338*exp(-t/18.51)+0.186*exp(-t/1.186).
 - The effect of CO₂ emitted at different times can be calculated
 - No need for considering RF when CO₂ is compared by CO₂ at different time

IPCC's global warming potential (GWP)


 Effect of accelerating deforestation = emitting CO₂ emissions in yr 0 instead of yr 1:


$$GWP_{CO2,\Delta t} = \frac{\int_{\Delta t}^{100} CO_{2,fraction}(t - \Delta t)dt}{\int_{0}^{100} CO_{2,fraction}(t)dt} \qquad GWP_{CO2,\Delta t = 0} = 1$$


$$GWP_{CO2,\Delta t = 1} = 0.9924$$


Effect of emitting 1 kg CO₂ in year 0 instead of year 1:

