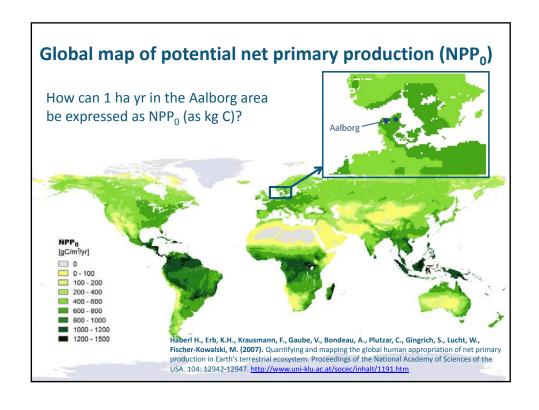

The concept – in six bullets.....

- Features of the model:
 - is applicable to all crops (also range, build etc.) in all regions in the world
 - The model overcomes the allocation/amortisation of transformation impacts
 - consequential and attributional modelling assumptions can be applied
- 1. The function of land: Capacity for growing crops/biomass
- 2. Land use changes are caused by the demand for land
- 3. There is a market for land => land tenure market
- 4. This market is global
 - crops can be grown in different regions
 - crops/food/biomass are traded on the global market
- 5. The model operates with different markets for land (arable, forest, range)
- 6. The effects of demand for land tenure include:
 - Transformation of land
 - Intensification of land already in use
 - Crop displacement



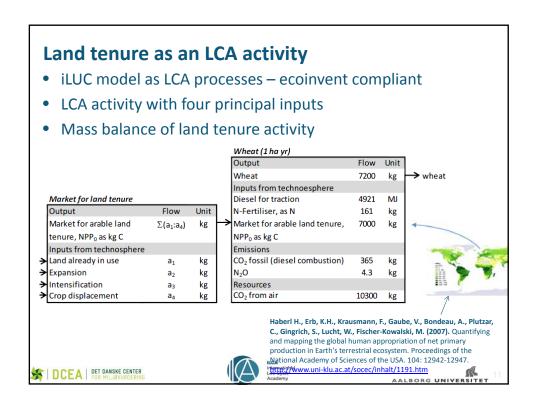
Land tenure - what is land?

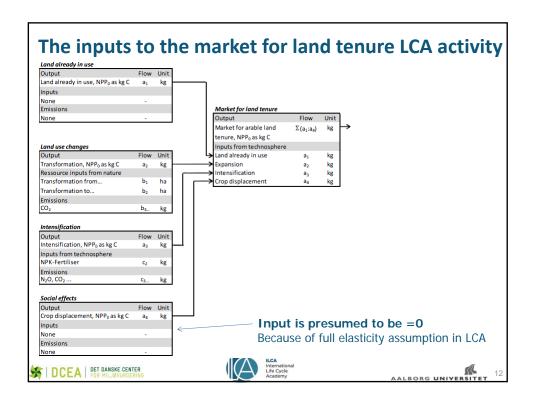
- Reference flow considerations
- Land = capital input for biomass production;
 - to produce electricity, input of capacity is needed: powerplant
 - to produce biomass, input of capacity is needed: productive land
- Land's capacity for producing biomass can be expressed as:
 - Hectare years [ha yr]
 - Productivity weighted hectare years [pw ha yr]
 - Potential net primary production (NPP₀) as a common currency for productivity [kg C]
 - Other...?
- Chosen reference flow: NPP₀. Justificiation:
 - Good global data, see next slide
 - NPP₀ has units of mass
 - Mass balance of a land tenure market LCA process

DCEA DET DANSKE CENTER

Land classification (land cover)

- what is there...

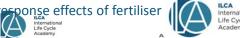

Land use classes	Description					
Land in use						
Cropland	Arable and permanent crops (FAOSTAT 2011)					
Intensive forest	Productive intensive forest, mainly even-aged trees and clear cut (Weidema 2011)					
Extensive forest	Productive extensive forest, mainly selective logging (Weidema 2011)					
Pasture	Permanent meadows and pastures (FAOSTAT 2011)					
Land not in use						
Primary forest	FAO (2010)					
Secondary forest	Other naturally regenerated forest (FAO 2010)					
Grassland	(Weidema 2011)					



Markets for land - potential use of the land Land tenure markets Extensive forest land Not fit for more intensive forestry (e.g. clear cutting and reforestation, species control etc.) because e.g. it is too hilly, too remote, or it is very infertile making intensive forestry uneconomic. Forests grown on extensive forestland are typically harvested after natural regrowth with mixed species. Intensive forest land Fit for intensive forestry but unfit for arable cropping because e.g. the soil is too rocky. Forest crops grown on intensive forestland may be managed as intensively or extensively. Intensive forestland may also be used for other uses, e.g. livestock grazing and extensive forestry. Fit for arable cropping (both annual and perennial crops), for intensive or extensive forestry, and pasture. Grassland Too dry for forestry and arable cropping. Grassland is most often used for grazing.

Life cycle inventory

Land tenure activity


- Average year 2000-2010, data: FAO, FAOSTAT, Haberl et al.
- NPP₀ equivalents from existing land in use
- NPP₀ equivalents increase from new land in use
- NPP₀ equivalents increase from intensification

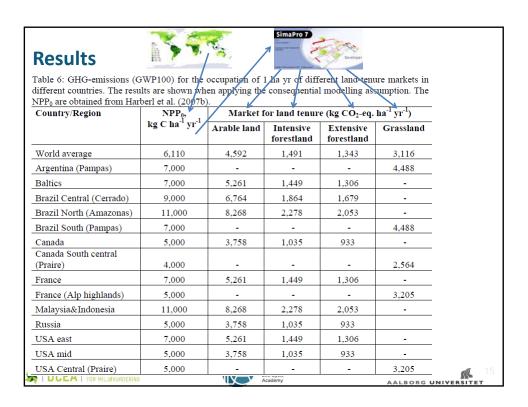
Expansion activity

- Which types of land: FAO forest stat
- Where do land use changes take place: FAO forest stat
- Carbon stocks and CO₂ emissions: IPCC (2006)

Intensification activity

- Which crops and where: FAOSTAT timeseries
- Current fertiliser levels for crops in regions where intensification takes place
- Emissions: based on dose-response effects of fertiliser DCEA DET DANSKE CENTER FOR MILJØVURDERING

Expansion: Transformation of land


- Challenge:
 - In LCI we have land occupation (ha yr)
 - We want to model effects of transformation (ha)
 - Occupation and transformation are not proportional
- Land transformation is modelled as accelerated deforestation
 - Demand for 1 ha yr causes:
 - 1 ha deforestation in year t=0
 - 1 ha avoided deforestation in year t=1
 - Emissions from accelerated deforestation
 - Net emissions = 0
 - Effect via time dependant global warming potential (GWP)

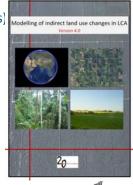
Results per NPP₀ and clca vs. alca

Table 7: GHG-emissions for the four land tenure markets. Results are shown as kg CO_2 -eq. (GWP100) per NPP0 (kg C) and per global average hectare-year. Global average potential productivity from Table 2 are used for the conversion of results per ha yr (see bottom line of current table). clca=consequential; alca=attributional.

Land tenure market	Arable land		Intensive forest land		Extensive forest land		Grassland	
Average potential productivity, NPP ₀ (kg C ha-1)	6,110		7,200		7,200		4,860	
Modelling	clca	alca	clca	alca	clca	alca	clca	alca
GHG-emissions per NPP ₀ as kg C	0.756	0.019	0.207	0.00379	0.187	0.00077	0.641	0.00816
GHG-emissions per ha yr (global average)	4,619	116	1,490	27	1,346	6	3,115	40

Effects when occupying land in the frontier

- Logics is straight forward when occupying land in established regions
- But... any differences when:
 - Occupying land in newly established land in Indonesia or Brazil (oil palm/soybean) compared to:
 - Occupying land in Europe/US (rapeseed/soy)
- Intuitive reasoning:
 - Frontier: you can see/feel the bad
 - Established: you can't see any deforestation
- No difference:
 - When affecting the frontier, it is likely that this piece of land would be the next to be brought into use anyway



Conclusions on the 2.-0 LCA iLUC model

- iLUC model applicable to all crops in all regions in the world
- The model considers land transformation AND intensification
- The model operates with different markets for land (arable, range, forest)
- Based on global statistics and models (FAOSTAT, FAO, IPCC)
- Enable for consequential and attributional modelling (ecoinvent v3 compliant)
- Amortisation (or allocation of deforestation emissions) avoided by use of time-dependant GWP
- The major uncertainties are related to data inputs (NPP₀ levels, carbon stocks, crop yield to fertiliser dose-response functions)
- Current markets for land may be sub-divided in more segments and regions if this can be justified
- More info at:

http://www.lca-net.com/projects/iluc_model/

