This course will take place in Aalborg, this is not an online course.
For the online course please see: https://phd.moodle.aau.dk/course/view.php?id=2466
Welcome to Hands-On Analysis of Microplastics in complex matrices
Description: Analyzing microplastics requires thorough knowledge on analytical techniques and approaches, but also a deep understanding the practical implementation of the procedures in the field and the lab. This PhD course focuses on the hands-on part of the work.
The course will start with a short introduction to selected sampling methods, after which we go sampling. The participants will collect a marine or freshwater sample by means of filtering devices or nets, and sample marine or freshwater sediments by grabs or corers. The samples are taken to the lab and analysis begins. As microplastics analysis takes many weeks per sample, we supplement the analysis of the sample you have collected with pre-prepared samples – a cooking show approach. After having prepared the samples, you will get hands-on experience in FTIR analysis of large and small particles (ATR-FTIR and μFTIR imaging, respectively) as well as introductions to μRaman spectroscopy and Pyr-GC/MS. The course will be concluded by interpreting the obtained data. We provide our solution for it in the software siMPle, which is used for (semi-)automated μFTIR imaging and Raman imaging data interpretation. You will be taught how it works and will get first-hand experience during our practice session.
Prerequisites: This course requires that you document the necessary theoretical background. For example, by having attended the PhD course “Microplastic Research - Analytical Methods for Microplastic Quantification (2024)” also held at Aalborg University, attained one of the previous year’s courses on microplastics analysis at Aalborg University, or similar activities and backgrounds.Learning objectives:
This hands- On PhD course aims to provide PhD students at both national and international level with the practical skills and in-depth knowledge essential to conducting microplastic research in field and laboratory settings. By the end of the course the participants will be able to:
- Master Sampling techniques for environmental microplastics
- Hands-on experience in sample preparation in the lab following a multi-step protocol under QA/QC conditions.
- Understand and practically explore Analytical techniques for microplastic detection and characterization.
- Conduct data Interpretation using siMPle Software.
Teaching methods: lectures, field and laboratory work, demonstrations and exercises. The course will be structured as follows:
Day 1 – Monday 9:00 to 17:00:
- Welcome to AAU-BUILD.
- Introduction and Sampling for microplastics at AAU campus or at Skudehavnen.
Day 2 – Tuesday 9:00 to 17:00:
- Lecture: Microplastic Extraction: “Sample Preparation à la AAU”
- Laboratory work – Opening up the Matrix – Water and sediment samples.
Day 3- Wednesday 9:00 to 17:00:
- Laboratory work – Getting the samples ready to Microplastic Characterization
Day 4 – Thursday 9:00 to 17:00:
- Hands- on Analytical techniques:
FPA - μFT-IR Imaging
ATR- FT-IR
μRaman
Pyr-GCMS
Day 5- Friday 9:00 to 13:00:
- Systematic Identification of microplastics with siMPle – Will you catch them all?
- Time for One-to-One meetings with the AAU microplastic researchers
Criteria for assessment:
- Attendance to all the activities scheduled for the course
- Submit a brief report – Participant’s perception on the Opportunities and Limitations on the Implementation of the AAU Approach for Microplastic Research
- Survey completion
Key literature:
Ivleva, N. P. (2021). Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews, 121(19), 11886–11936. https://doi.org/10.1021/ACS.CHEMREV.1C00178
Liu, F., Vianello, A., & Vollertsen, J. (2019). Retention of microplastics in sediments of urban and highway stormwater retention ponds. Environmental Pollution, 255, 113335. https://doi.org/10.1016/j.envpol.2019.113335
Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C., & Gerdts, G. (2017). Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science and Technology, 51(24), 14283–14292. https://doi.org/10.1021/acs.est.7b03055
Primpke, S., Cross, R. K., Mintenig, S. M., Simon, M., Vianello, A., Gerdts, G., & Vollertsen, J. (2020). Toward the Systematic Identification of Microplastics in the Environment: Evaluation of a New Independent Software Tool (siMPle) for Spectroscopic Analysis. Applied Spectroscopy, 74(9), 1127–1138. https://doi.org/10.1177/0003702820917760/ASSET/IMAGES/LARGE/10.1177_0003702820917760-FIG6.JPEG
Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1–9. https://doi.org/10.1016/J.WATRES.2018.05.019
Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports 2019 9:1, 9(1), 1–11. https://doi.org/10.1038/s41598-019-45054-w
Organizer: Alvise Vianello, Laura Simon Sanchez, Fan Liu, Jes VollertsenLecturers: Alvise Vianello, Laura Simon Sanchez, Fan Liu, Nanna Dyg Rathje Klemmensen, Jes Vollertsen
ECTS: 4
Time: 21-25 October 2024
Place: Section of Civil Engineering, BUILD, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
Zip code: 9220
City: Aalborg
Number of seats: 15
Deadline: 30.09.2024
Important information concerning PhD courses: We have over some time experienced problems with no-shows for both project and general courses. It has now reached a point where we are forced to take action. Therefore, the Doctoral School has decided to introduce a no-show fee of DKK 3000 for each course where the student does not show up. Cancellations are accepted no later than 2 weeks before the start of the course. Registered illness is of course an acceptable reason for not showing up on those days. Furthermore, all courses open for registration approximately four months before start. This can hopefully also provide new students a chance to register for courses during the year. We look forward to your registration.
For inquiries regarding registration, cancellation or waiting list, please contact the PhD administration at aauphd@adm.aau.dk
- Teacher: Fan Liu
- Teacher: Laura Simon Sanchez
- Teacher: Alvise Vianello
- Teacher: Jes Vollertsen
Welcome to Microplastic Research – Analytical Methods for Microplastic Quantification
Description: This PhD course addresses the theory of sampling, sample preparation and state-of-the-art analytical techniques to analyze microplastics in environmental matrices. Furthermore, it provides expert insights into various aspects of interdisciplinary microplastic research.The course will start with the principles of techniques for sampling of microplastics and with the principles of extraction of such samples. We will discuss the steps needed in cleaning up samples for natural organic and inorganic matter, as well as getting samples ready for subsequent identification. We will cover approaches and issues for QA/QC of your analysis, here amongst field blanks, laboratory blanks, recovery studies, and what are appropriate sample sizes to obtain statistically robust data.
From here, the focus shifts towards some theory on suitable techniques for microplastics characterisation. We will cover the most commonly applied techniques, namely ATR-FTIR and μFTIR imaging – the combination of light microscopy with spectral images generated by Focal Plane Array (FPA) or linear array-based instruments to a particle assembly. The second commonly used spectroscopic method, Raman, is also covered. We address Raman spectroscopy and its application for automated particle selection for faster mapping. The last family of covered techniques are thermal degradation techniques, where we focus on pyrolysis GC-MS as the most used technique. The last step in microplastics research is the interpretation of the obtained data. We provide our solution for it in the software siMPle, which is used for (semi)automated μFTIR imaging and Raman imaging data interpretation. You will learn the principles behind and will get first-hand experience during our practice session. Furthermore, international experts in the field will provide information on, e.g., transport and processes, ecotoxicity, and governance framework for microplastics.
Prerequisites: All steps of the course require a high degree of expertise and training. This course is aimed to introduce participants to all steps and discuss issues, pros and cons of different approaches, and is in general very open and informally structured to promote discussions. This course requires the participants to read up on the theory before the course and is evaluated by a subsequent report.Learning objectives: This course aims to equip PhD students at both national and international levels with comprehensive and practical knowledge in the theory, techniques, and interdisciplinary aspects of microplastic research. By the end of the course, participant will be able to:
- Acquire a diverse skill set for sampling microplastics across various matrices, encompassing biotic and abiotic contexts, from natural environments to the human health domain.
- Implement robust Quality Assurance and Quality Control (QA/QC) measures to ensure the generation of high-quality data suitable for publication in peer-reviewed articles.
- Demonstrate an understanding of the underlying principles behind key analytical techniques employed in microplastic characterization, including ATR-FTIR and μFTIR imaging, Raman spectroscopy, and pyrolysis GC-MS.
- Develop Competence in Systematic Identification of Microplastics with siMPle.
- Recognize and actively engage with leading experts in the field of microplastic research, fostering valuable connections and gaining their insights in the current advancements and challenges in the context of microplastic analysis.
Teaching methods: The course features eight two-hour online lectures and three panel discussions, each hosting leading experts. The structure of the course will be as follows:
L1. Introduction & Student presentations
L2. Sampling Microplastics
L3. Sample preparation
L4. FT-IR Theory and applications to microplastic analysis
L5. The complexity behind siMPle - μFTIR imaging and analysis
L6. Raman spectroscopy
L7. Pyrolysis- GC/MS for microplastic quantification
L8. Insights into microplastic ecotoxicity
L9. Panel discussion - Analytical Methods - A Guide to Choosing the Right Approach?
L10. Panel discussion - Microplastic Research Beyond Academia
L11. Panel discussion - TBA
Criteria for assessment:
- Mandatory attendance in all scheduled course lectures.
- Deliver a brief presentation introducing the participant and their research topic.
- Submit a report summarizing acquired knowledge during the course, tailored to align with the participant's research objectives.
ECTS: 3
Lecturers: Laura Simon Sanchez, Alvise Vianello, Fan Liu, Jes Vollertsen + Guest lecturers TBA
Time: October 2024 – The eleven online sessions (11 x 2 hours) will be allocated during the first three weeks of October
Preliminary schedule:
Date | Time | Work in progress title |
01/10/2024 | 09:00-11.00 | L1. Introduction & Student presentations |
03/10/2024 | 10:00-12:00 | L2. Sampling Microplastics |
03/10/2024 | 13:00-15:00 | L3. Sample preparation |
04/10/2024 | 10:00-12:00 | L4. FT-IR Theory and applications to microplastic analysis |
04/10/2024 | 13:00-15:00 | L6. Raman spectroscopy |
07/10/2024 | TBC 10:00-12:00 | L7. Pyrolysis- GC/MS for microplastic quantification |
08/10/2024 | 09:00-11:00 | L8. Insights into microplastic ecotoxicity – Claudia OK |
08/10/2024 | 13:00-15:00 | L5. The complexity behind siMPle - µFTIR imaging and analysis |
TBA | TBA | L9. Panel discussion |
TBA | TBA | L10. Panel discussion |
TBA | TBA | L11. Panel discussion |
Place: Online
Number of seats: 50
Deadline:
Key literature:
Ivleva, N. P. (2021). Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews, 121(19), 11886–11936. https://doi.org/10.1021/ACS.CHEMREV.1C00178
Liu, F., Vianello, A., & Vollertsen, J. (2019). Retention of microplastics in sediments of urban and highway stormwater retention ponds. Environmental Pollution, 255, 113335. https://doi.org/10.1016/j.envpol.2019.113335
Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C., & Gerdts, G. (2017). Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science and Technology, 51(24), 14283–14292. https://doi.org/10.1021/acs.est.7b03055
Primpke, S., Cross, R. K., Mintenig, S. M., Simon, M., Vianello, A., Gerdts, G., & Vollertsen, J. (2020). Toward the Systematic Identification of Microplastics in the Environment: Evaluation of a New Independent Software Tool (siMPle) for Spectroscopic Analysis. Applied Spectroscopy, 74(9), 1127–1138. https://doi.org/10.1177/0003702820917760/ASSET/IMAGES/LARGE/10.1177_0003702820917760-FIG6.JPEG
Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1–9. https://doi.org/10.1016/J.WATRES.2018.05.019
Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports 2019 9:1, 9(1), 1–11. https://doi.org/10.1038/s41598-019-45054-w
Important information concerning PhD courses: We have over some time experienced problems with no-shows for both project and general courses. It has now reached a point where we are forced to take action. Therefore, the Doctoral School has decided to introduce a no-show fee of DKK 3000 for each course where the student does not show up. Cancellations are accepted no later than 2 weeks before the start of the course. Registered illness is of course an acceptable reason for not showing up on those days. Furthermore, all courses open for registration approximately four months before start. This can hopefully also provide new students a chance to register for courses during the year. We look forward to your registration.For inquiries regarding registration, cancellation or waiting list, please contact the PhD administration at aauphd@adm.aau.dk
- Teacher: Fan Liu
- Teacher: Laura Simon Sanchez
- Teacher: Alvise Vianello
- Teacher: Jes Vollertsen
Description:
The application of Computational Fluid Dynamics in building ventilation systems is crucial for creating environments that are not only energy - efficient and compliant with regulations but also prioritize occupant health, safety, and comfort. CFD provides a comprehensive understanding of airflow dynamics, enabling engineers and designers to make informed decisions that positively impact the performance of building ventilation systems in the real world.
This Ph D course delves into the intricacies of Computational Fluid Dynamics ( CFD) as applied to building ventilation. Participan ts will explore advanced numerical methods and s imulation techniques essential for understanding and optimizing airflow within built environments. The course emphasizes practical applications, bridging theoretical concepts with real- world scenarios to enha nce participants' skills in addressing ventilation challenges.
The course is organized in three days. In the f i rst day, the course gives a n introduction of CFD fundamentals and building ventilation designs by using CFD commonly in practice through different case studies. In the second day, the concepts previously learnt are used to implement concepts from the theory to benchmark study. In the third day, the impact of CFD on IAQ, infection r isk and thermal comfort studies is discussed with through different case studies and exercises.
Day 1 : Introduction to CFD in Ventilation ( Theoretical day)
- Background and Introduction to CFD principles.
- Basics of f luid dynamics in the context of building ventilation.
- Laminar, Transitional and Turbulent f lows in buildings.
- Application of CFD in building ventilation design
- The use of Benchmarks for model validation.
Day 2 : CFD techniques in ventilation
- Problems and possibilities to consider prior to a CFD prediction
- Building geometry and mesh generation using CFD s imulation software.
- Boundary conditions as diffusers , people etc.
- Numerical solver setup.
- Hands- on workshop: CFD Benchmark study and problem description Practical exercise: https:// www. cfd- benchmarks. com/ Backwardflow/
Day 3 : Practical Applications
- CFD for Thermal Comfort, infection r isk and IAQ.
- Interactive session: Participants present their s imulation results , supplemented with feedbacks and discussion.
- Validation and verification of CFD simulations through benchmark studies.
- Discussion on challenges and best practices in CFD for building ventilation.
- Future trends and advancements in the f ield.
Participants will gain hands - on experience through practical exercises and real- world case studies, ensuring they leave the course with a comprehensive understanding of applying CFD to optimize building ventilation systems.
Prerequisities:
· Basic knowledge of thermo- fluid dynamics in buildings
· Basic knowledge on building ventilation systems
· Basic knowledge of CFD s imulation tools.
Learning objectives:
After the course, participants will be able t o increase their knowledge about the most recent CFD techniques and their applications in the built environment .
Teaching methods:
Teaching will be provided as a mix of lecture presentations, hands - on trainings, simulation exercises and discussions .
Criteria for assessment:
Participants will be evaluated through a f inal assignment, which consists in the preparation of a report to be delivered 2 weeks after the end of the course.
Key literature:
- Nielsen, P. V. ( 2015 ) . Fifty years of CFD for room air distribution, Building and Environment , Volume 91 , September 2015 , Pages 78 - 90 , https://doi.org/10.1016/j.bui ldenv.2015.02.035
- Li, Y., & Nielsen, P. V. ( 2011 ) . CFD and ventilation research. Indoor air , 21 ( 6 ) , 442 - 453 .
- Cuce, E., Sher, F., Sadiq, H., Cuce, P. M., Guclu, T., & Besir, A. B. ( 2019 ) . Sustainable ventilation strategies in buildings: CFD research. Sustainable Energy Technologies and Assessments, 36 , 100540 .
- Michael Wetter, Wangda Zuo, Thierry S. Nouidui & Xiufeng Pang . ( 2014 ) . Modelica Buildings l ibrary, Journal of Building Performance Simulation, 7 : 4 , 253 - 270 .
- Chen, Q. ( 2009 ) . Ventilation performance prediction for buildings: A method overview and recent applications. Building and environment, 44 ( 4 ) , 848 - 858 .
- CFD benchmark: https://www.cfd-benchmarks.com/
- Peng, L., Nielsen, P. V., Wang, X., Sadrizadeh, S., Liu, L., & Li, Y. ( 2016 ) . Possible user dependent CFD predictions of t ransitional f low in building ventilation. Building and Environment, 99 , 130 – 141 . https:// doi. org/ 10 . 1016 / j . buildenv. 2016 . 01 . 014
- Van Hooff, T., Nielsen, P. V., & Li, Y. ( 2018 ) . Computational f luid dynamics predictions of non- isothermal ventilation f low — How can the user factor be minimized? Indoor Air, 28 ( 6 ) , 866 – 880 . https:// doi. org/ 10 . 1111 / ina. 12492
Organizer:
Prof. Alireza Afshari
Lecturers:
Peter V. Nielsen, Professor ( Aalborg University)
Chen Zhang, Associate Professor ( Aalborg University)
Haider Latif, Postdoc ( Aalborg University)
ECTS:
3
Time:
October and November 2024
Place:Aalborg University ( Copenhagen campus). Online participation will be available.
City:Copenhagen
Number of seats:
20
Deadline:
TBA
Welcome to Modelica-based simulation of building and district energy systems
Course description:
Due to climate change, more stringent building energy standards are enforced to reduce building primary energy use. This causes a shift towards the use of more advanced and complex heating and cooling systems for the built environment.
Energy simulation programs are powerful tools that have been increasingly used by engineers and researchers for the design, analysis and optimization of energy and district energy systems. However, today’s programs have difficulties to handle the challenges posed by the complexity of future systems, which are expected to integrate renewable energies, thermal storage, and advanced control algorithms.
This course aims to present latest developments in modeling and simulation of building and district energy systems based on Modelica modeling language. Modelica is an open-source language that features ease of use, visual design of models with combination of Lego-like predefined blocks, ability to define model libraries with reusable components, and support for modeling and simulation of complex applications involving parts from different engineering domains.
The course is organized in three days. In the first day, the course gives a basic introduction of Modelica fundamentals by introducing object-oriented and equation-based modeling. In the second day, the concepts previously learnt are used to develop a building model equipped with a radiator system and an air-based cooling system. In the third day, a district heating system model will be developed by connecting substations, piping network and central plant.
Day 1: Introduction to Modelica and Dymola
· What is Modelica?
· Dymola software tool
· Basics of the Modelica modeling language
· Object-oriented and equation-based formulation
· Modelica libraries
Day 2: Hands-on training: Simple house with radiator heating system
· Solving 1D transient heat conduction
· Creating a single-room model
· Building envelope modeling
· Radiator heating system and controller
Day 3: Hands-on training: District heating system
· Substations
· Piping network
· Ground losses
· Central plant
Prerequisites:
· Basic knowledge of any programming language
· Basic knowledge of building simulation programs
· Knowledge of thermo-fluid dynamics and heat transfer mechanisms in buildings
Learning objectives:
After the course, participants will be able to use Modelica libraries, create models of building rooms and heating/cooling systems on their own, run simulations, and analyze results.
Teaching methods:
Teaching will be provided as a mix of lecture presentations, hands-on trainings, simulation exercises and discussions.
Criteria for assessment:
Participants will be evaluated through a final assignment, which consists in the preparation of a report to be delivered 2 weeks after the end of the course.
Key literature:
· Peter Fritzson. (2014). Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. John Wiley & Sons.
· Jan Hensen and Roberto Lamberts. (2019). Building Performance Simulation for Design and Operation. Routledge.
· Michael Wetter, Wangda Zuo, Thierry S. Nouidui & Xiufeng Pang. (2014). Modelica Buildings library, Journal of Building Performance Simulation, 7:4, 253-270.
Organizer:
Alireza Afshari, Professor (Aalborg University)
Lecturers:
Alessandro Maccarini, Assistant Professor (Aalborg University, Denmark)
Michael Wetter, Computational Senior Scientist (LBNL, USA)
Rene Just Nielsen, Simulation and Control Engineer (Added Values, Denmark)
ECTS:
3.0 ECTS
Time:
21-23 August 2024
Place:
Aalborg University (Copenhagen campus). Online participation will be available.
Max. number of participants:
20
Deadline for registration:
Fore more details and pre-registration see https://amaccarini.github.io/Modelica-PhD-course/
Important information concerning PhD courses: We have over some time experienced problems with no-show for both project and general courses. It has now reached a point where we are forced to take action. Therefore, the Doctoral School has decided to introduce a no-show fee of DKK 3000 for each course where the student does not show up. Cancellations are accepted no later than 2 weeks before start of the course. Registered illness is of course an acceptable reason for not showing up on those days. Furthermore, all courses open for registration approximately four months before start. This can hopefully also provide new students a chance to register for courses during the year. We look forward to your registrations.
- Teacher: Alessandro Maccarini
Welcome to Advanced control for building applications
Description:
Topic, background and motivation for the course:
Despite extensive research and successful implementation of advanced control techniques, like MPC, in other fields, the application of such techniques is still limited in practice in building services engineering. One of the reasons seems to be the lack of knowledge among building service engineers about advanced control methods. There is a growing need for multidisciplinary education on advanced control methods in the built environment.
Buildings use a large share of total energy use around 35–40% in many countries. In Denmark, buildings account for 40% of the Danish energy use. Building energy-related activities are responsible for the 19% of GHG emissions worldwide. Therefore, it is motivated to investigate the energy saving potential in the building sector. Advanced building control can considerably reduce building energy use. For instance, numerous studies reported that advanced HVAC control can notably reduce energy use and mitigate GHG emissions with average energy savings of 13% to 28%.
The most popular advanced building control solution among the scientific community is Model Predictive Control (MPC) due its proven ability to handle constraints while optimizing the system performance. MPC on the supervisory level can be designed to find energy-efficient or cost-efficient control settings for the local controllers, taking into account the system level characteristics, interactions and comfort constraints. MPC combines building modelling, measurement, disturbance forecasting as well as information from external sources in the optimization formulation in order to find optimal control settings.Prerequisites:
- Basic knowledge of a programming language (MATLAB)
- Knowledge of basic control methods, e.g. feedback control loop, PID controllers
- Basic knowledge of building energy modelling and thermodynamics
- Basic knowledge of linear algebra
Learning objectives:
This course is intended for PHD students in the built environment and building service engineers, at national and international level, who want to:
- increase their knowledge about the most recent advanced control techniques and their applications in the built environment
- learn the theory and practice of Model Predictive Control and MPC problem classes for building applications
- learn how to formulate an MPC problem for building applications
- learn how to implement a basic MPC algorithm in a small-scale experimental mock-up
Teaching methods:
Teaching method comprises of lecture presentations by the teachers, simulation exercises with teachers’ supervision and discussion-based experimental demonstration possibly with competition between groups of student. The structure of the course is as follows:
Day 1 (Theoretical)
Lecture 1: A glimpse of control theory
- Control of dynamical systems: examples of control problems in building application, types of control: model free (PID) and model-based control, open loop, and closed loop control)
- LTI system: eigen value and vector, stability of the system, controllability
- Pole placement
- A MATLAB simulation example from building application for checking the controllability and stabilize the system with pole placement
Lecture 2: Optimal control design
- LQR control
- Full-state estimation: observability and Kalman filter design
- LQG control
- A MATLAB simulation example from building application for LQR, Kalman filter and LQG control design
- General concepts of MPC
- Modelling (White box - Black box- Grey box)
- A MATLAB simulation example for Grey box modelling of a case study from a building application
Day 2 (Simulation)
Lecture 1: An MPC design in MATLAB
- Introduction to CVX toolbox
- Cost functions formulization and constraints definition
- Presentation of a real-life case study
- Simulation exercise and homework
Day 3 (Laboratory experiment)
Lecture 1: Introduction on the experimental setup
Experimental exercise
- Run the experimental system and be familiar with the it
- Input-output data collection
- Identify the system model and simulate the MPC controller
- Implement the MPC controller on the experimental setup
- Comparison of a PI control and the MPC control on the system performance
Criteria for assessment:
- Attendance in all course days as scheduled is required.
- Report on the simulation results.
- Presentation of the experimental results provided by each group
Key literature:
- Jan Drgona et al., All you need to know about model predictive control for building, Annual Reviews in Control, 2020
- Predictive control with constraints. by Maciejowski
- L. Wang, Model Predictive Control System Design and Implementation Using MATLAB. Springer, 2009
- Henrik Madsen, Statistical Modelling of Physical Systems (An introduction to Grey Box modelling)Organizer: Alireza Afshari
Lecturer: Samira Rahnama
ECTS: 3.0
Time: 2-4 December 2024
Place: Aalborg University - Copenhagen Campus
Zip code: 2450
City: Copenhagen
Number of seats: 15
Deadline: 15 November 2024
Important information concerning PhD courses: We have over some time experienced problems with no-show for both project and general courses. It has now reached a point where we are forced to take action. Therefore, the Doctoral School has decided to introduce a no-show fee of DKK 3.000 for each course where the student does not show up. Cancellations are accepted no later than 2 weeks before start of the course. Registered illness is of course an acceptable reason for not showing up on those days. Furthermore, all courses open for registration approximately four months before start. This can hopefully also provide new students a chance to register for courses during the year. We look forward to your registrations.
- Teacher: Samira Rahnama
Sewer Processes - Modeling of sewer microbial and chemical processes
Description: The course provides a basis for up-to-date knowledge and modeling of sewer microbial and chemical processes and shows how this understanding can be applied for design, operation, and maintenance of wastewater collection systems. A central focus of the course is on predicting critical impacts and controlling adverse effects of hydrogen sulfide and other toxic/noxious gases.
The course:
· Present new modeling tools for the design and operation of sewer networks
· Establishes sewer processes as a key element in preserving water quality
· Details the WATS sewer process model
· Highlights the importance of aerobic, anoxic, and anaerobic processes
The course will introduce experimental methods to quantify wastewater quality in terms of biodegradability and chemical composition. During the course, the participants will get hands-on experience with setting up numerical sewer processes models and with determination of central model parameters.
Organizer: Asbjørn Haaning Nielsen & Jes Vollertsen
Time: 7, 8, 9, 10, 11 October 2024
ECTS: 5
Number of seats: 20
Deadline: 16 September 2024
Important information concerning PhD courses:
We have over some time experienced problems with no-shows for both project and general courses. It has now reached a point where we are forced to take action. Therefore, the Doctoral School has decided to introduce a no-show fee of DKK 3.000 for each course where the student does not show up. Cancellations are accepted no later than 2 weeks before start of the course. Registered illness is of course an acceptable reason for not showing up on those days. Furthermore, all courses open for registration approximately four months before start. This can hopefully also provide new students a chance to register for courses during the year. We look forward to your registration.
For inquiries regarding registration, cancellation, or waiting list, please contact the PhD administration, aauphd@adm.aau.dk
- Teacher: Asbjørn Haaning Nielsen
- Teacher: Jes Vollertsen